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ABSTRACT
We present a theory relating the completeness and independence properties
of sets of complex exponentials {exkt} in the Sobolev spaces Hm[a,b] to
strongly continuous groups of bounded operators on HM™{a,b] whose generator
is the differentiation operator on the domain
{x e ™ 'ta,b]] ®,n) =0}

where n 1is an element of H™1[a,b]' whose Fourier transform has {Ak} as
its zero set in the complex plane. In the process of proving our theorems we

also develop a new approach to the use of the Laplace transform in the

spaces H™[a,Db].
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SIGNIFICANCE AND EXPLANATION

In two previous MRC Technical Summary reports #1700, 2021 we have pointed
. out the relationship between bases of complex exponentials {eA t} in the
Sobolev spaces H™{a,b], neutral functional equations, and control canonical
forms for systems governed by hyperbolic partial differential equations - the
last mentioned being important in the development of stabilization and

spectral assignment theories for such systems. These studies, and additional

studies projected for related systems, have focussed our attention on the need

to relate the classical theory of exponential bases to the more modern theory
of semigroups of bounded operators. Attempts to carry this program out for
H™[a,b] as well as Lz[a,b], an important consideration for applications,
have also resulted in the need for development of ways to apply the Laplace

transform in H"{a,b], as presented in Section 3 ff. As a result we have

obtained completeness and independence theorems for exponential bases in
i"la,b] in a simpler and more natural setting than in the existing

literature.
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The responsibility for the wording and views expressed in this descriptive
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UNIFORM BASES OF EXPONENTIALS, NEUTRAL GROUPS,
AND A TRANSFORM THEORY FOR H™[a,Db)
DAVID L. RUSSELL

1. Introduction.

The central entities in this paper are generalized exponential functions, by which we
mean the exponential functions, eAt, A complex, t real, together with the functions
(tk/k!)ekt, k=1,2,3,¢++ , For reference, and to fix the notation, we set down
Definition 1.1. A sequence of generalized exponentials is a set of functions

. 2.t
(t) = (/k)e? , telI, jed, k= 0,1,2 00 um =1 (1.1

Py,x

where I is a closed real interval, J 1is & countable index set, the complex numbers

Aj , j €3, are distinct, and the mj, j € g, are positive integers.

For purposes of abbreviation we may refer to the set of generalized exponentials associated
with the exponents Aj and the multiplicities my and denote the totality of such
functions by P(Aj, mj).

Let H be a complex Hilbert space whose elements are scalar functions defined on I
or, possibly, distributions, in the sense of Schwartz [27], with support I . We need not
specify the inner product ( , ) and norm | I at this point bhut if the reader thinks
of L2[I] and the associated Sobolev spaces Hr[I] , r real, little will be lost (see
{1], [6] for exposition of the properties of these spaces). We require that H should
include all of the generalized exponentials (tk/k!)ext.

Given H and a sequence P(Xj,mj) of generalized exponentials in H , we are
primarily concerned with the completeness and independence properties of P(Aj, mj) in
H . We denote by (P(A,, m

R 3™3

closed subspace of H containing all finite linear combinations of elements of

)] the closed span of Pp()\ y in H , it.e., the smallest

[P(XA., m)] . As usual, P(Xj, mj) is complete in H if [p(xj, m.)] = H .

v 3

Independence is more complicated, as there are a number of varieties of this notion which

3

must be considered.
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Definition 1.2. The sequence of generalized exponentials P(Aj, mj) is

(1) weakly independent in H if the convergence of a series
a, . to 0 in H 4implies all coefficients a are
TN N in npl. s 2

jed k=0
zero.

(ii) strongly independent if no p, belongs to the closed subspace of H

Iy ky
d b ‘ j # H
spanned by pj,k (i,k) (3q.kq) m,
(iii) wuniformly independent if for any series E z aj X pj X convergent
’ ,

jeg k=1
to a limit p ¢ H we have

d'zlpl: ) 1 la, X
jeg k=0 ¢
for gsome pogitive constants 4d,D.

|2 < Dzlpli R (1.2)

1f P(Xj, mj) is complete in H and uniformly independent, we say that

P(Xj, mj) constitutes a uniform basis for H . This has been called the Riesz basis (([3],

[18]). It is easy to see (cf [25], e.g.) that P(Aj, mj) ig a uniform basis for H if

and only if, given an orthonormal basis B for H , there is a bounded and boundedly
invertible operator T : H + H such that T(B) = P(Aj, mj) .

A generalization of the uniform basis concept is that of a uniform decomposition.

Definition 1.3 Let Pm , m € M, where M is a countable index set, be a sequence of

closed subgpaces of H . These provide a uniform decomposition of H if given p ¢ H

there exist unique vectors 1 € Pm such that

p = Z Py (1.3)
meM
and, for some positive constants d,D

~2y 42 2 ¢ q21092
d™rpn < ) fp b, < Dipt . (1.4)
m €M

N

In the case dim P =1 for all m we may define P be the unique vector of norm 1

in P . Then we have P, = 4P and
£ m Z M “n Pm
(1.5)
d-znp|2 < z |a |2 < Dzﬂpﬂz
H H
m <M

" —




and we are back to a uniform basis (which, of course, need not consist of generalized
: : > . o -1
exponentials as in (1.2). Clearly, vectors p =Y p |Ym|' |Ym | bounded, also form a
uniform basis.
Given a uniform basis P = Pn for H there is defined, in a natural way, a dual
uniform basis Q = {qm} for H. If B 1is an orthonormal basis and T(B) = P , then
. -1
Q = (T ) (B).

Equivalertly, {qm} is the unique element of H such that

{1, L =m

0, L #¢m . (1.6)

(Pyedp)y = Sgp =
This notion extends to uni.orm decompositions with Q. the orthogonal complement of the
closed subspace gpanned by the vectors in Pl , L #m .

1f {pm} is a uniform basis for h and p ¢ H, it is easy to see that p has the

convergent development
p = Z um pm ' am = (p,qm)H B
m <M

Slightly weaker properties are the following. If P = {pm} is strongly independent in
H and each p - H has a unique series development

= 1.7
stronaly convergeni. in H , we will say that P is a convergent basis for H .
Correspondiraly nne can define strong decompositions of H , requiring the P, to bhe
strongly independent when pm € Pm and the existence of a unique development (1.6).

It is customary in the case of Hilbert spaces to identify H with its dual space, hut
this is certainly not obligatory. Much of the work of J. L. Lions and his school is hased
on a different representation of the dual space H' . See e.q. [15], [16]. 1In our
applications of this procedure the "central" space is no(1) = Lz(I]. Suppose a second
Hilbert space V , in practice usually one of the Sobolev spaces HI(I), or a variant
thereof, is densely and continuously imbedded in #0(1) , i.e. V may be identified with a
subspace of LD ) by means of a one to one and continuous injection map J = V + HO(I) .

Thus J : V » J(V) S_HO(I) , which we abuse slightly by writing V « H0(1). 1t is known

then that there exists another Hilbert space, V', with HO(I) < V' such that V' |is

tsometrically isomorphic to V . (See [H), [I] for details.) Further, a bilinear




form (v,w ) may be defined for v ¢ V , w ¢ V' , equivalent to the inner product

(v,;) when w ¢ HO(I), such that every continuous linear functional on V may be

1 (1)

represented as
L(v) = (v,w)
where w 1is a uniquely defined element of V' .
For our work in this paper the Hilbert space H containing the generalized

exponentials p.

5 k(t) is always identified with V , In other applications H is
’

identified with V' , the dual space H' 1is identified with V (V is clearly reflexive,
being a Hilbert space). 1If the pz(t) are taken to be in H , the q (t) are taken to
be in H' and (1.6) is replaced by

(pl,qm Y = 62,m . (1.8)

If the pz(t) lie in V' , the qm(t) are in V and

Caprpg? =6y - (1.9

Otherwise, everything remains as before.
The relationship between sets of generalized exponentials and group/semigroup theory

arises very naturally. Given any finite sum
m, -1 k Ay
T. 07 a.k;—lel,csx, (1.10)
jed k=0 3
replacement of t by t + T maps this sum into a new sum
m, -1 tk ALt

b] 3 !
.Z R 7 Bk %7 © , tel, (1.11)
ng k=10
and the Bjk are readily ocomputed from the aj x * The inverse relationship arises from
!

replacement of t by t - T in (1.11).

Extending this relationship to infinite sums of generalized exponentials is not
trivial: restrictions must be placed upon the Ai and the mj to realize the strongly
continuous semigroup property and the strongly continuous group property requires even
more. The central theme of this paper is the relationship between the uniform basis
property of P(Xj, mj) and the strongly continuous group property. This relationship is
not yet complete in this paper but we are able to exhibit what we believe to be significant

aspects of it. It will be seen that there is a broad correspondence between uniform bases

of generalized exponentials for the Scbolev spaces H™[a,b] and scalar neutral functional

-4~




equations of the form

™ (t+b) = coc(m)(t+a) + e i
where + *** indicates lower order terms in a sense to be made precise later. But this B
class of equations is not adequate in itself and we are led to study neutral functional |
equations having a more general form which we discuss in the general framework of "neutral f;

groups" .

We are also interested in developing versions of the Laplace and Fourier transforms
that are appropriate for use with the Sobolev spaces H™{a,b] on a finite interval
{a,bl. It will be seen that there is a very natural way in which these transforms may be
developed and that the resulting structure permits an esthetically pleasing and useful
representation of these spaces which facilitates study of completeness and convergence

properties of sets of generalized exponential functions.
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2. Uniform Bases and Neutral qroups.

We begin by defining the Sobolev spaces H"[a,b] for integer m . The space
Ho[a,b] is simply Lz[a,b] with the usual inner product ( , ) . For m a positive
integer Hm[a,b] consists of complex valued functions defined on [a,b] possessing

derivatives of order < m , in the sense permitted in the theory of distributions, which

all lie in Lz[a,b]. The "standard” inner product in H™{a,b) is

fie~38

[P e ey g™ (ryae (2.1)
a

but this is not convenient for manipulations, as we have already explained in [J]. We

define in HM[a,b] the inner product, equivalent to (2.1),

1 N
f(k) (k)

m
(c) g 'lc) + fb f(
a

(f,9) =
k

™ty o™ (eyae , (2.2)

Wt~ 1

0

where ¢ 1is an arbitrary, but fixed, point of [a,b] . The norm, of course, is

1£1 = /(f,£) . (2.3)
m

The dual space Hm[a,b]’ congists of distributions having the form. where GLR) denotes the

Dirac distribution of order k with support {a} , a ¢ [a,b) ,
m=-1
T on % e esl® (2.4)
m

k
k=0
The first part is self-explanatory. 1In the second part N € Lz[u,b] and, for
£ < H [a,b]
g,n_ 88K = P ey (M (e)ar. (2.5)
a

In the case where m 1is a negative integer it is best, to avoid confusion, to

redefine m as positive and refer to the space as H™™[a,b]. For the definitinn, we start

with H™™a,bl', which is Hla,b], .
H-m[a,b]' H Hz[a,b] = {f ¢ Hm(a,b]f(k)(a) = f(k)(b) =0, k=20,1,%,m1}, '

Then H'm[a,b] is the dual of H ™M{a,b]® relative to Lz[a,]. It may be seen to he

isometrically isomorphic to H"a,bj'/B where B is the subspace of HM™[a,b]' spanned hv

e




Gék) f 6£k) , k=0,1,2,¢00,m-1. Its properties are more fully explored in [22].
The theory of uniform bases of generalized exponential functions in L2(a,b) is

approximately fifty years old and very well developed. Originating with Paley and Wiener

i

i

!

{

}I
[19], ({31], it was initially concerned with the independence and gpanning properties in L

L2{0,2"] of the sequences of exponential functions :
th H
e , - < k < @, (2.6) d
i J
}
where the complex numbers Ak were taken to be "close" to the imaginary integers k; . 1In ; b
' 4
some cases it was assumed that )'-k = -Ak . The major emphasis centered on the question: .
what is the largest positive number M, such that if !
[
sup A, - kil =M <M (2.7)
K X 1

then (2.6) forms a uniform (or Riesz) basis for L2[0,2n]? Increasingly large lower bounds
for M, were established by Paley and Wiener {191, ({31], Levinson [14]. Levinson's

conjecture that M1 =‘A4 was confirmed by Kadec [11] in 1964. From Levinson [14] it is

known that one cannot take M = My = Ya -

Numerous generalizations of this basic result have been offered. It is easy to

replace (2.7) by
lim sup |A, = ki] =M <1@
k + =
retaining the uniform basis property. One first establishes strong independence, following

k

! that with an application of the Fredholm alternative. (See[23), e.g:) Any finite

collection e ! , e 2 , ", e n can be replaced by the generalized exponentials

A, t A, 0t At At
1 1 t 1 n-1 k1
e , toe P 5 e st , t /{n=1)1 e and this can be repeated any finite

number of times. However, none of the intermediate powers of t may be skipped. One may

select n complex numbers X’,Xz,"‘,xt« all distinct modulo the integers, and set

Ak,j = nki + Xj + Ck.j , =® ¢k <®w , §=13,2,e00,¢r, l

ALt
’ and the e k3 will form a uniform basis for L2[0,2w] provided the Ak . are all

distinct and

B -
L o i




lim sup |e = M
k + =

j:1'2’oo.'r

k,jl

with M suitably small. (See [5].) Again one may replace any finite number of strict

Ak t Ak t Ak t

. 1 1 . .
exponentials e , e ,%°,e n by a suitably sequence of generalized exponentials.

One may allow duplication among A1,X2,~--,An . The ek 3 must then be more severely
’

restricted. (See Ullrich [30].) An excellent recent review has been offered by Redheffer
{21]. A very general theory, related to our notion of a uniform decomposition of X into
subgpaces X, 2$ described in Section 1 is given in Schwartz [28].

All of these results trivally extend to Lzla,b] by replacing the "reference points"
ki, == <k<®, by(i’_'—a)ki,-w<k<m.

It has been known for sometime ([14], [28]) that if P(Aj,mj) is a basis for
L1[a,b] one may obtain a basis for Cla,b] by adding at most one additional exponential
function. The converse 1is also true. 1If P(Aj,mj) is a bagsis for C[a,b), then one may
obtain a basis for L1[a,b] by removing at most one exponential. In this spirit a recent
result [26], [22] establishes the following. If the exponentials pj,k(t) ¢ P(Xj,mi)

4

form a uniform basis for Lz[a,b], and if 01,02,'°°,0m are m complex numbers, distinct

and not equal to any of the Aj , and if

m
p(Ay = T (X - ol) , (2.8)
2=1
then the functions

oy (BB, =k a3 12, l
a,t ]
|
e . , = 1,2,000.m J

provide a uniform basis for H"la,b]. 1In the other direction, if a‘,az,---,am are m

digtinct complex numbers included in the Xj and if p(1) is again defined by (2.8 ), the

functions

p(kj)pj (B mmCk cm 3= 1,2,0m,
’

——




form a uniform basis for H ™[a.,b] . Both results may be modified (see [22) for details)
to include addition or deletion of generalized exponentials.

Having thus reviewed some of the important results regarding basis properties of
generalized exponentials we may now proceed to the central theme of this paper, the
connection between uniform bases of generalized exponentials in HM({a,b] and what we will
call "neutral groups" in H"{a,b).

Definition 2.1. Let S(t) be a strongly continuous group of bounded operators on

H™[a,b], m=0,1,2, see , We say that S(t) is a neutral group in H™{a,b] if the

generator of S(t) is the differentiation operator

(

STV o, ™

(Ax)(t) = (Alx{c), x'(c), ***,
(m+1) (2.9)
x

= (x' (&), x"(e), soe, x ™ (a), (*))

defined on an appropriate domain D (a) < Hm+1[a,b] < H"(a,b] . (We will show later that

the domain of A necessarily takes the form

™1 a,bl] (x,n) = 0} (2.10)

D(a) = {x<c w
for a unique n ¢ Hm+1(a,b]'.)

An operator A of the form (2.9) is a neutral generator if A , so defined, does

indeed generate a strongly continuous group on H"{a,b] .

The "standard example” for n corresponds to what is usually called an m-th order
neutral functional equation. The generator in that case being (2.9} with domain (2.10),

where

-

m
(x,n) = x(m)(b) +n x(m)(a) +

, I S

n (s)dvis) ,
=k
0 a

e

k
(2.11)

v being is a normalized function of bounded variation on [a,b] such that, with V
denoting the total variation
lim V(v,{a,a+te]l) = 1lim V(v,{b-g,b}) = 0 .,
e+0 €+0

See (7], (8], [17] for related existence and unigqueness theory. However, we will see in

Section 5 that there are neutral generators on H™la,b) which do not have this form. The

construction involves the transform theory to be introduced in Section 3.

'
1
|
!

e i e




The two questions which interest us the most are the following.

Question A. Let P(Aj,mj) be a uniform basis of generalized exponentials for H™[a,b].

Does there exist a neutral generator A , as defined above, such that the generalized

exponential solutions of

dx(t,s)

3t = A x(t,8), =-®Ct e, s ¢ [a,b) (2.12)

are precisely the generalized exponentials in P(Xj,mj)?

Question B, Let A be a neutral generator on H™a,b] and let P(Xj,mj) be the get of

exponential solutions. Do the functions P(Xj,mj) form a uniform, or perhaps just

convergent, basis for H"{a,b]?

e ek e iAo AT

By an exponential solution of (2.12) we mean, of course, a solution of the form
k Aj(t+s)
x(t,s8) = ((t+s) /kl)e , =@ <t <®, 8¢ [a,b) . (2.13)
In studying these questions it is convenient to have the following lemma at our

disposal, which allows us to study only neutral groups in 12[a,b].

m
Lemma 2.2. Let p(A) = X am_kxk be a complex polynomial of degree m and let
k=0 m
p) = ] am_ka (D = d/ds)
k=0
m
(k)
p(&)y = 1 a _ .
\] kK =0 m-k O

Let n_ € H‘[a,b]' and let (Agx)(s) = x'(s) on the domain Ding =

0
(xe t’labllx e 0 [a,0), (x,ny) =0}, Let (A (x(c), x'(c), *o+ Xm0,
x(m)(')))(s) = (x'(c), x"(c), **° , x(m)(c), xm+1(')) on the domain D(Am) =
{x ¢ #®a,b}|x ¢ H™*1{a,b], ¢ X, )} =0, where
= [ m+1 '
nm = p(Go) hd no ¢ H {fa,b]’ . (2.14)

Then A, is a neutral generator on t?(a,b] if and only if A is a neutral generator on

H®(a,b].
Before giving the proof we note that the convolution product (2.14) of the

distributions p(66) and "9 is defined as in [A]. 1In the proof itself we introduce the

convolution product

-10-




n*zg

+1 1
where n « Hm {a,b]' and 7 is defined on (~®,®), L{t + *) ¢ H {fa,b] on a < s € b.

As we will see in Section 4, i app priate definition of nm * £ is
(v * () = (g(t+ *),n ), a.e. (2,15)
On the right hand side of (2.15) we have the value of the linear functional
m+1 ' . m+1
n < H {a,b) at the element ([(t + *) ¢ H [a,b), the ( , ) denoting that value,
as is common in functional analysie.
Proof. Let us note that a linear map P : E™ @ LZ{a,b] + H™{a,b] may be constructed as

follows. Given

¢ E®, £™(+) ¢ L%[a,b) (2.16)

see YTV ™y

m=1

~ “ 1
P(E) =L =G+ 7€ H::c (-%,») where g is the unique solution of
P(DI; = §" , ;(k)(c) = Ek ; ko =0,1,°0¢,m1 .,
. ~ : ~ ~{%) X
The functions ¢, denote the solutions of P(D){ =0 , ( (c) = &,

P(D)L = Em, C(k)(c) = 0 . Standard results from ordinary differential equations show

that P: E® & L2[a,b] * H"{a,b] is one to one onto, bounded and boundedly invertible.
Suppose A; is a neutral jsenerator om t2[a,b). Let 53 < t?[a,b] and let £™¢,*)
be defined by
£, = s (g™, te (=),

where Sp(t) is the group generated by Ay - When Eg e D (Ao). g™t o) e D (Ao) for all

t so that
CeMe ey =0, t o€ (-=,=) (2.17)
The equation
m
48 (e,0) m LN .
prrai AOE () (t,)

m . :
shows that ¢§ is, in reality, a function of t + s , so that

£ sy = Mt s) s ¢ [a,b), -t cCw

-11-
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1
L

defines a function in Lioc(-",n). when 5: € D(AO) . E™ eH

oc("”,") and (2.17) gives,

in agreement with our earlier remarks

(We use the same symbol n for the element of H1[a,b]' and the corresponding

0
distribution with support in [a,bl.)

Given £ € E" and 53 € L2[a,b], the map
Pig.gy » g

agssociates with E,EO an element ;o € Hm[a,b] . We have

T = &g * &
ag above. If we now let £(t) be the solution on (-®=,») of

P(D)g = £" (2.18)
with %) () = g, k= 0,1,2,000,m=1 , then C(t) = ¢ (£), t ¢ [a,b],

C(k)(c) = Co(k)(c), k = 0,1,2,*¢¢,m=1, Since (2.18) is the same as
p(&') * g =¢g"
when E: € D(AO) (just those cases wherein CO € Hm+1[a,b] and (co, p(é*') *n) =0) we
have in that case
PIS) *n*g=nvp) *g=n*g =0,

Letting Z(t,*) be the element of H™[a,b] represented by

Llt+c), T'{ttc), vo-,

™V (o,

C(m)

(t + ¢))
m+1
we have, when g, € H [a,b] and (zo,p(G') *n) =0,

{z(t,*), p(6') *n) =0

and
dg(t,s) _ dglt,s)
it s ¢
When I € H?:; (~o,0) ,
1
™ z(t,s) 3(m+1):(t,s)
at(3s)™ ()™
-12=-

[P

T
[N A, - o

[P




Moreover
o (k) (k+1)
ac 4 (t,c) 4 (t.c), k 0.1, m
8o that
d -1
& ieengtee g™ ket ™0 -
1
@ e, greeier, woe e ™iee, ™ e Az,

The strong continuity, bounded exponential growth etc of Z(t,*) in H™a,b) can be
inferred from the corresponding properties of E™(t,*) and the familiar properties of
solutions of p(D)g = E™ . wWe omit the (decidedly unexciting) details.

The other direction is even simpler. Let [ satisfy

aglt, ey .
- ARGt ) .

For ¢, = 5(0,*) € D(Am) we have
p(§')y * §

p(é') * n * g =n

0 0
8o that, with £ = p(§*') * ¢, = p(D)C

n *£=20.

(k+1) (k+1)
Since 3 45(;'8) = 3 ;ﬁf;s) , k=0,1,°¢s,m=-t , it is a simple matter %o snow
3t(ds) (d8)
that
ag(t,e) _ 3&(t,m)
3t 38 *
Thus £ satisfies
ag(t,*)

rrameti N AL PRI

SPAS S-S
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Again the regularity properties are easily developed from those of { and the fact that
¢+ p(D)g = £ i8 one to one, onto bounded and boundedly invertible on HM[a,b]/ker p(D)
to L2{a,b] .

The proof of the next lemma is omitted being similar to the previous one and a result

in {22]1,(26]. k
Lemma 2.3. Let P(Aj, mj) be a collection of generalized exponentials, Py k(t) =

ALt -
(tk/kl)e i ’ je J, k=0,1, "',mj—1. Let the index set J be expressed as a

disjoint union

-13-
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J = U J
L e A .

0
and let xl be the (closed) subaspace of sza,b] spanned by Py k(t), Jeg

2

k = 0,1,'0',mj-1.

Let p(A) be a polynomial of degree m 4in XA and let x: be the subspaces of

H™{a,b] spanned by the solutions z4,x of

P(D)Zj’k(t) = pj,k(t)' j e Jl' k = 0,1,"',mj-1 (2.19)

and let =™ be the subspace of HM™[a,b) spanned by the standard solutions of

p(D) z{t) =0 . (2.20)

Then Em, x® , £ e A, form a uniform decomposition of HM[a,b] if and only if the

xi , L=1,2,3,008 form a uniform decomposition of L2[a,b] .

Remarks. By "the standard solutions of p(D) zj,k(t) = pj'k(t)" we mean those particular

solutions of this equation which are found by the method of undetermined coefficients.

ALt
Thus if P; klt) = (tk/kl) e 1 and Xj is a zero of p(A) of multiplicity m , the
! k+m At
solution we are referring to is ! (t )e 3 « We exclude addition of p(D) =
(m) (k+m) !
p (X))

3
0 . Thus, if ;: is the subspace of all golutions of (2.20),

m_>m , .m

x2 xl /2 .

Alternatively, Lemma 2.3 can be restated as follows. If the xm £ e K , are

L’

spanned by py (t)s 3 ¢ J, , k=0,1,%00,m -1, and if A, ,A, , *eo, A, ,
3 £ 3 374, 3,

H t
k ~
m = m, (tq/q!)e e P(A.,m.),
1 9 0

) Py

,°",mj are such that

j2 r k

q=0,1,***,m =1, then the xm , 2 e X , form a uniform decomposition of HM[a,b) if
k
and only if the nontrivial spaces obtained from

0 m
xl = p(D) xz
form a uniform decomposition of Lz[a,b].
We can provide a non trivial partial answer to Question A immediately. OQuestion R

requires for its answer the transform theory which we will develop in Section 3.

-14~




Theorem 2.4. Let P(Xj,mj) be a collection of generalized exponentials as discussed

earlier. Suppose the index set J can be divided into disjoint subsets Ji'

-0 ¢ £ ¢ ®» , with the following properties

(i) There exists a constant D > 0 such that for 3, ¢ J2
| Im(A.) - Im (A.)] € 2D ;
I 3
(ii) There is an integer N > 0 such that J, has at most N elements

L
Aj , including multiplicity, that is, for all & ,

J m, =N SN;

. 3j L
b3 Jl
(iii) There is an M 2 0 such that |Re(kj)l <M for all 3§ ¢ Jy i
(iv) The spaces Xy spanned by thegeneralized exponentials Pj,k(t)' j e Jg
k = 0,1,-'-,mj-1 , form a uniform decomposition of Lz[a,b] « Then there
is an element n € H‘[a,b]' such that the A are precisely the

J
eigenvalues, with multiplicities my o of the operator

(Ax)(8) = x'(8) ,

defined on the domain

Din)y= {x €H1 {fa,p]] ( x,n ) =0} , (2.21)

and A is the generator of a neutral group S(t) on 12(a,b] .

Proof. Let Xg 0o =® < £ ¢ =, be arbitrary elements of xz and let

N
m
b= T (A=ig3d= § a, a% , a, =1, (2.22)
. je g, 3 =
be a monic polynomial of degree “z having the Aj as zeros of multiplicity mj . It is
clear then that
pl(D) xl(t) =0, t ¢ [a,b] . (2,23)

Moreover, xl(t) may be extended to ¢t (-w,m) by extending the solution of (2.23) from

fa,b] to {(-<,») . Since every x - Lz[a,b] can be written as
x = Z Xg o
2
c—zﬂxﬂzz < lelzz < cxt ,
L {a,b) ] 1" [a,b] L {a,b)
-15~
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it is plausible to suppose that x can be extended from [a,b) to (-»,®) by extending

the «x But we need some estimates on the extended xg to establish this. Let

g °

No
Wy € E be defined by

wz(t) H Wy (t) H xz(t)
2 1
w& (t) | xlft)
N (N,=1)
2 2
v, {t) x2 (t) .

Then
wz(t) = A2 wg(t)

where Al is the Nl x Nl companion matrix

0 1 0 LI 0
Al = 0 0 1 . v e o]
L] . * .
-a -a a L] -a

LN, 2,N,-1 %,N, -2 2,1

the a, . being the coefficients in (2.22).
’
Then xg(t) is a linear functional of the vector wl(t) 7 Af h. = (1,0,0,°9+,0),

*
xz(t) = h wz(t) .
In systems theory terminology, xz(t) is an "observation” on wz(t) « A well kxnown result

(see, e.g. [24]) provides a formula giving xl(t), t arbitrary, in terms of xz(s) B

s ¢ [a,b):
» Bt 21 b
x,(t) = he W £ e h x,(s)ds, (2.24)

where wz is the so-called "observability matrix"

=Pe nn' el as. (2.25)

e s
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Let to be arbitrary. We claim that there is a positive number M(to), independent of
£ , such that

Hx, < M(to)ﬂx£H . (2.26)

2 L2[t0+ a,t + bl L%(a,b)

To establish this we effect the transformation
'iTz
yz(t) = e xl(t) B (2.27)
where, from (i), rz is a real number such that |11 - Im(xj)l <D, jJ ¢ J}Z . The

transformation (2.27) is an L2 isometry from the subspace Xn spanned by the Py k(tse

j e Jl' k= O,1,~--,mj-1 to the subspace Xz spanned by the functions
(A,- i7,)t
~ k 3
pj k(t:) = (t°/kt)e - .
1
j € Jl , ko= 0,1,---,mj-1 .

If we can prove an inequality like (2.26) for the yz(t), it is immediately established

for xz(t). Let zi(t) correspond to yl(t) as wz(t) does to xl(t) « Then

zl(t) = Az Zl(t) '

*
vl(t) = h zz(t) B

where h* is as before and Xl is the companion matrix associated with the polynomial
m
BV = T -y -t
jea, )
The formula (2.24) becomes - -
At E's
* L7 ~=1 /b
yy(t) =he W et n yy(s)ds. (2.28)
a
From (i), (iii) in the statement of our theorem, the complex numbers ij = Xj ~ i12 ,
j - JQ , satisfy the bound
~ 1
IX.1 <8 = (D% + M%) 72

with B independent nf & . Together with the inequality NE € N, this implies a hound

on the coefficients of Py ¢ hence a bound on the matrices A e conclude that there

I
is an M, , independent of £ , such that




provided only that the matrices

~W -~
52 = fb eAls h h. eAJLs ds
have inverses §2'1 uniformly boundedaindependent of g . But the pair (h.,iz) B
h' = (1,0,¢¢0,0) , il a companion matrix, is "observable" (see [24]) again) in all cases
which implies ([(24]) that Wz is invertible in all such cases. Since w;1 is readily seen
to be continuous with respect to the entries of Rl and since those entries lie in a
compact set in CNz, Nl < N, we conclude that the ﬁ;1 are bounded, independent of & .

-1
From the boundedness of the W a result (2.26) for the y2 , and hence for the x

L 2

follows. Using (2.29) we can see, more specifically, that there are positive numbers Mg+

B such that

Blthi (2.30)

ix 2 <m
L [t0+a,t0+b] L [a,b]

2

Once we have (2.30) everything else follows quite quickly. Given x «¢ L2[a,b] we write

x(g)= x ()

3
with
<2 ixn? <] lelzz < Czlxlzz . (2.31)
L"{a,b] % L [a,b} L la,b)

Bach xl is extended to (=-%,») as a solution of (2.23). The result (2.30), along with

the fact that the sgpaces Xl are invariant, i.e.

71 € Xp = x,l, €

X
2
L"[a,b] L (t0+a,t0+b]

2 r
allows us to use the uniform decomposition property to see that x ¢ L2(t0+a,to+b] for
any t, and, in fact, there must be a constant K(to) > 0 such that

Bltol

1xN 2 < K(to)e el 2 .
L [t0+a,t0+b] L"{a,b)

We define the group S(t) by

S(t): x| 2 + x| 2 .
L (a,b] L” (t+a,t+b]

-18-
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That S(t) is bounded, uniformly on compact t-intervals is clear. Strong continuity

follows from the fact that if we write
N o~ - 2 ~ -
x(s) = ] xls) ¢ T xyls) T x (8) +x(s) (or Lla,b) =X +X)
-L<RSL 12)>L
. then the maps
S (v & x| » x| 1
L L Lz[a,b] L L2[t+a,t+b]
- . - %
s (t) : ] + x| 1
L 2 r2(era,een) g
are such that '
"4

~ N

.3 ~ )
S{t)x SL(t)xL SL(t)xL

S (t) are, as functions of

The operators SL t , continuous in the uniform operator topology

of L(IL,X'v while our estimates show SL(t) uniformly bounded on compact intervals.

Then, for Tier, 4 [t-",t+87,
2 2 ~ ~ ~ 2 ~ ~ - >
PsCrern = steoxl” & cTNS (e0T) = S (e X AT+ WS (e31) = s (ehx - ]
XL AL
~ ~ 2.~ 2 -~ ~
CBS (t+r1) - S (erh dx W + 2 sup I1S(s) ! fx #.
v L LR s I{t,8) Ly
L ) ! L
is easily used to establish that
2
1lim U(S(t+T)- S(t))xh =0 , x « L {a,b].

Tt
There remains the question of identification of the generator of S(t) and its

domain. The existence of a closed generator A follows from the general theory

{6]1,(12]. Further, it is clear, from the translation property of S{(t) that A must

agree with the differentiation operator on the dense subspace
7 X
X, = v .
= L=1 L
If we define
!
Bx = 2 X} £
L
-® ¢ £ ¢ ™
with
DBy = {x = N g | x* = ) x' converges in LZ(a,bl} (2.32)
-~ ¢ £ (® - ¢ R < @

~19-
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it is easy to verify that B is a closed extension of differentiation as defined on

X . Since A 1is likewise a closed extension of differentiation on X ¢ it is only

necessary to show that these must agree. We begin by noting that the closedness of A

together with Axl = xi , shows that Ax = Bx for x . D(B) as given in (2.32). Thus

e ——— e e o

A 5B . On the other hand, if x ¢ D(A) we can write

,
x = Z P z,¢ X, ., I
o < § ¢ w 2 L L ;!

convergent in L2[a,h]. Noting that A 1is invariant on each xi , A" is invariant on !

the dual subspaces ‘

t

l 1

Yk = [ E xk } ’
xk # 2

each of which must belong to D(A'). For Yo € Yl B

*
0 = (Ay,, x~x)) = (yge X = Ax,)
= - 5! = -yt )
lyg. I z, = %) (ygr zg = %00 ?
k [
. - x' § - -
Since this is true for all Yl € Yl , we conclude z, Xp § : . xk . Rut zy xi v
€ xl' This is only possible if zy = xi and we conclude that
X = z z, = E xi
-® ¢ L ¢ w - ¢ f ¢ >
is convergent so that x ¢ D(B) and Ax = Bx . Thus B > A . It follows that A = B

on D(A) = D(B) as given by (2.32).

Finally there is the matter of the form of D(A). Let 0 be a complex number not
included in the Xj . Taking m =1 in Lemma 2.3, it is then clear that X; and Xi are
subspaces of u'la,b], 1%la,b) spanned by the same generalized exponentials. Since

ot

1 1
x0 , here spanned hy e ~, together with the Xl , form a uniform decommnsition of

1
H'fa,b], we conclude that there is a unique element n + H [a,b]' such that

1
Coxn? =0, x X, , =®<ic=,

1
It is clear that {x + H [a,b]]| (x,n) = 0} is the clnsed span nf the Pyl An

H’[a,b]. It remains only to show that this is the same as ['(A). This is clear, because




"

2
convergent in L [a,b} ,

{x|x = ) X,

-0 & L ¢

2 {

-~ i

x' = T Xy  convergent in L'la,b]} )

-cicw 3

I

f

|

is precisely ({x|x = ¥ x, convergent in H‘[a,b]} which is again the closed span
~0 ¢ § (™
of the P; \(t) in H'(a,b]. Thus
’

D(A) = {x « #'(a,b}| (x,n) = 0}

and the proof of Theorem 2.4 is complete.

Corollary 2.5. Let Theorem 2.4 be reformulated with P()\j, mj) replaced by E(Aj, m)),

-~ ~ m . m
J by J, Jl by JIL , and suppose X, 1is_the subspace of H'la,b] spanned by pj,k(t)’

k = 0,1,"~,mj-1. Let (i), (ii), (iii) hold with (iv) replaced by the

H™{a,b] . Then there is an

5 €,

form a uniform decomposition for

m
assumption that the xl

are precisely the eigenvalues of the

+1
element nm € Hm [a,b]? such that the )‘j

operator Am’ Hm[a,b] > Hm[a,b] defined by

od 1
Am(x(c),X'(c),"'.x(m Doy x™ oy = o) rre o™ (o) ™ )y (2033
on the domain
D(ay = {x H’"”[a,blg 1" (a,b] | x,n =0}, (2.34)

and A is the generator of a neutral group on H™[a,b] .

The proof may be sketched as follows. Let 01.02,~",0m be any m distinct complex

numbers among the Aj and let

Define the sapces

0 m
X, = p(D)xi .

2
These are spanned by subsets of the generalized exponentials spanning x:\. Then use
Theorem 2.4 to find
A, « t’ta,p) » L1a,n)

with domain

1

D(AO) = {x . H [a,b]]( x,no) = 0}
-21_
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1
for some no < H (a,b]', Ay generating a neutral group So(t) on Lz[a,b] and having
{xj,j € J} = {Aj, j = Juj o, k= 1,2,°%%,m}
and its eigenvalues. Then, using Lemma 2.2, the operator Ay defined by (2.33) as the :
domain (2.34) with

= v
s p(dc) *n

B

0

has precisely the eigenvalues Xj , J € J with multiplicities mj and generates a neutral

group sm(t) on Hm[a,b]. Further details are left to the reader.

e e

It is also possible to state a similar Corollary for the spaces H "(a,b], taking |
P(Xj, mj) as in Theorem 2.4 and deleting m generalized exponentials crom that set : 4
appropriately. The reader will have no trouble carrying this out if he is interested. The
techniques required are similar to those used in [22].
There is, probably, a more straight-forward proof of Theorem 2.4. The essential
difficulties occur as the Xj’ j € Jz, are allowed to cluster together as j gets large. ‘ #
Given A generating a neutral group S(t) on HM™[a,b], the element n ¢ Hm+1{a,b]
whose existence has been established in Theorem 2.4, will be called the generating

functional, or generating distribution for §S(t).

In order to answer Question B ,and from intrinsic interest, we develop in Section 3 ﬁ

versions of the Fourier and Laplace transforms in Hm[a,b]', Hm[a,b], respectively, which
are particularly adapted to the study of questions of this type. Additionally, we wish to a

set down the properties of these transformations here for use in later extensions of the §

work of this paper. J




3. A Transform Theory for H™[a,b]', H™[a,b].

The classical treatments of nonharmonic Fourier series ((19], ([14], [2B], etc.) rely
heavily on the Fourier transform for the development and proof of theorems. We have seen
in Section 2, and earlier in [22], [26] that there are comparable theories for nonharmonic
Fourier series in the Sobolev spaces H®(a,b]. But how is this theory expressed in terms
of transforms? The answer is not quite trivial, and we will gsee in this section that a
combined use of the Fourier and Laplace transforms yields an elegant framework for the
study of all sorts of questions of this type.

It is notationally simpler to take the point ¢ 1in (2.2) to be zero. Since every
interval [a,b] which we are concerned with in this paper includes zero, this causes us no
problems., Transformation of our results to other intervals is not difficult. For the work
of the present section we specialize [a,b) to [-m,n}, again no real restriction.

We have already introduced the Sobolev space W -7, ), representing elements (using

c =0 now) as

x = (x00), x"(0), e, x ™ 0y, x™ 41y, x™e LE(-m,0].

We choose to represent and think of Hm[-n,ﬂ]'as a space of distributions y of the form

cs(m-1)

(m)
= ] [N
Y= yoSy + v S+ * Y19 ty, 83,

where yo,y1,°°',ym_1 are complex numbers, Gér) is the r-th distributional derivative of

the Dirac distribution, 60, with support {0} and Yo € Lz[-n,w]. For x ¢ H"[-7m,7),

y © H(-n,m)

-

-
(xoy) = Ty x™oy ¢ /Moy (s x™(s)as.
k m
k=0 -n
The norm of y |is
m=-1
- 1
iyl =0 7 |ykI2 o " |ym(s>|2as] 2,
H o [-m,n)"' k=0 -m

-23-
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Definition 3.1. We define the Fourier transform F on Hm[-ﬂ,n]' by

-24-

F(le) = (pA:Y } 1 pA(B) = exs . (3.1)
Thus
m=1
k m m A
Fly,A) = § Y A+ A T e"®y (s)as . (3.2)
m
k=0 -n
The linear space of all (obviously entire) functions ¢(A) = F(y,A), y ¢ H"[-n,n]"*, will
be referred to as F(H™[-m,m]')= ¢ , the latter designation being used when the space
H'{-m,7]' is understood.
Theorem 3.2 The transforms ¢ ¢ ¢ have the following properties (A = £ + in):
(i) v(A) is entire;
(ii) for each real £ , the function of n ,
” + i
ve(n) —Mr; , e 1P(-m,) (3.3)
(v + | + inl)
(iii) [ is a Banach space (in fact a Hilbert space) with respect to each of
the equivalent norms
2 1
o = ( ___“’_il)__i lax1)2 , p real,
Re(M)=p | (1 + |A])
and F:H"[-m,m1)' » & = F™[-m,m)') _is an algebraic and topological
isomorphism with respect to I | and I I .
m o
R {-m,%])"*
Moreover, an entire function ¢ ¢ ¢ if and only if
Petm 2 o€ + 1M/ + 15 + 40" e 12 () (3.4)
for some real value of £ and thereis a positive M such that for all real
£
mlE|
sup |¢t(n)| < He 7 (3.5)
~xnge (1 + 1gly 2

R

bkl

[

s




Proof. Most of these properties are immediate consequences of corresponding theorems 1
for f on L2[-ﬂ,ﬂ1. In particular, (i) and ({i) are immediate from that theory and

the form (3.2) of ¢(X) = f(y,\). Wwith

Jn = [T Qs y_(s)ds (3.6)
-
the necessity of (3.5) for Re(A) = £ > 0 follows from

A i As- 2, 41 - 1
1R a1 [Ty masl < (7 Iy (er1%as) 2 ([TRE(STT) ag )t

e -1 -1 -7 !
MOIY ] (3.7) ‘
® L (en,m) :
< 2 .
(1 + g 72 ;
where j
-4n§ 1 §
1 -

M, = sup {1 22 |(1+IE|)/2} a
£20 q
q

and a similar computation applies for £ < 0 . Setting zm(s) = eEsym(s) '

Fe +am (et (.60 = [T €' (s)as
-1

and the Plancherel theorem gives

;—“ W(E + 1-)!:22 = nzmn2 < ez"mwmlz2
LY =,®) Li-7,m) Lof-m,7)

’

Tyt -
S WL e it e

from which it is easy to see, since each of the functions Ak/l1 + D™,
k = 0,1,2,***,m=1, is square integrable on vertical lines, that there is a B > 0 such

that (cf. (3.3))

BT

b ¥ <5 "1y . (3.8) ,
S L (e #"(-n, ) :

e

This gives part of (iii) and establishes the necessity of (3.4).

For the sufficiency of (3.4), (3.5), we suppose V(i) entire, satisfying these

conditions. From Taylor's theorem, with Yy = w(k)(O)/kl, k=0,1, ¢*¢*, m=-1,
m=1
ey = Ty A e B
k
k=0 l

and (3.4) gives

=25 -
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m=1

slE+ in) = ]y (E+ ¥
-~ k=0 2
PWE + in) = — ¢ L(-w,®) (3.9)
(E + in)

It follows that there exists z_ ¢ Lz( o ,») guch that

as a function of n . o
~ R i

G(E + in) = 1.i.m e (3.10)
+ @ -R

;. zm(s)ds

1 n

z (8) = 5= l..m et
R+ = -R

Using (3.5) with a familiar result found in [74],[19], we see that the support of =z

S (6 + imdn .
is

confined to [==,»]. Setting
4

8
ﬁ“(S) = e ym(s)

(3.10) pecomes
FE+in) = [Ty (s)as (3.11)
-1
and ¢{A) is seen to have the form (3.2). This establishes the sufficiency of (3.4),

(3.5).

The only interesting part of the work is the proof that F71 o ¢ » 6™(-n,m}' is

continuous. (The continuity of F is (3.8).} The proof we present here is based on a

complex variables argument but has much in common with the proof of Lemma 2.2.

Let F1 be the contour consisting of the two parallel lines Re(A) =p ,

Re(}) = =-p, p >0, the first oriented from n = - to n = +=o, the second in the

other direction. Let p()A) be a polynomial of degree m having no zeros on or in the

€

interior of P1. For v € & ,

w{x) = Y(X)/pld)

is holomorphic on and in the interior of F1. Clearly
s 2!
()i < By = Ao T Int(T) (3.12)
(1 + [AD
for some Bg > 0 . Elementary computations yield
- Yo - 4] ygp' (0)
¢l(0) = —f— , ¢'(0) = - 0 (3.13)
p(0) p(0) p(0}2
etc, From the Cauchy formula and (3.5)
¢(k)(0~ =;%j—_ .";(_)‘T)(.g,:_,k=o,112,.oo,m-1 , (3.14)
T A
1
~26 -

T
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the convergence of the integrals following from (3.12) and (3.3). Since 1/)‘k'H € LZ(F1)

for k =0,1,2,°*+,m=1, the Schwartz inequality gives

“x R .
< g
le (o)1 B lgl < Bosk‘““’"p + wn_p) ,
LT )
)]
eee,B

k=0,1,2, *¢+, m~1 , with ﬁo,ﬁ appropriate positive constants. From the

1’ m~1

triangular arrangement of the equations (3.13) and the equivalence of Ip, [ | 0 it then
follows that for some By >0 , k = 0,1, «ve, m-1,
lykl < skuvup, k=0,1,¢00,m1 , (3.15)
Next, let #(\) be given by (3.9). Then from (3.15) and the fact that
k-m 2 -~ 2
RY] € L lT1), k = 0,1,°%s,m=1, we conclude that ¢ ¢ L (F,) and

m-1

I ol <blet + J b iyl
LZ(I‘1) P ko KK

for some positive constants b , bk' k =0,1, ¢*, m=-1. Applying the Plancherel theorem to

(3.11) on Re()) = p and Re(A) = p then gives, for b > 0, Sk >0, k=10,1,%00, m1,

m=1
by I <biel_+ ¥ b |y l. (3.16)
L [-n,m ® k=o X K
Combining (3.15) with (3.16) and our definition of |l IHm , we see that
[-®,m)"
FYoa 4 - Hm(-n,n]' is continuous. The proof of Theorem 3.2 is now complete.

If the interval (=-mn,7] in Theorem 3.2 is replaced by a general finite interval
(a,b), very little in regard to the space H™{a,b]’ and f(H™{a,b]’) changes. In fact,

the only change is that (3.5) is replaced by

MeP® £ 0 (3.5b)
M
(1+ 1€y 2

sup | w.(n) <

Sxnem Me*
—_—T £ <0 .
(1 + e 2 {3.5a)
1
If A generates a neutral group S(t) on H™a,b] and n e Hm+ {a,bl' 1is the
generating functional, the characteristic function for S{t} {(or A ) |is
v = Fn,hy . (3.17)

This agrees with the usual definitions. when n is given by (2,1%1) ,

PRSI
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. m=-1
YY) =X e +n. Ae +
k=0

A [P A auie) e 1™ (b1
a
and can easily be put in the standard form (3.2) with m replaced by mt1 .

We turn now to a dual transform, or perhaps we should say a class of dual transforms
for H'(-%,T] ° The transform theory for functions x ¢ H-n,m) is, in general, rather

poorly developed. The problem lies in the fact that use of the classical Fourier-Laplace

transform

=X
xh) = [1 e™"® x(s)ds
-n
does not lead to a transform x{(A) whose properties readily reflect the differentiability

of x ¢ Hm[—ﬂ,ﬂ]; the behavior of x(in) as |n| * ® is dominated by the boundary terms
agssociated with s = a, s = b. It is clear, of course, that one could trivially modify

the F transform, as defined above for Hm[-ﬂ,n}' , and let

As_(m)
x

m—1x(m-1) (s)ds

(o) + A" [T e
-1

but this yields nothing new as compared with F on H™M ~-m,m) ' It is not well suited to

X(x) = x(0} + AX'(0) + 90 + )

our work here.

The reader will recall that when the Fourier or Laplace transforms are used to solve a

2
9
partial differential equation such as, e.g., 5% = 3—% on a finite interval with certain
X

boundary conditions applying at the endpoints of the interval, it is common to extend
y({x,£) to =® ¢ x < ®» , where possible, by use of symmetry relations suggested by the
boundary conditions. This is the essential idea of what we do to construct transforms of
elements in Hm[-ﬂ,wl, the symmetry relations being replaced by the conditions that the
function x ¢ Hm[-n,n] be extended to H?oc(-“,”) as a solution of a neutral functional
equation. Since there are infinitely many neutral functional equations which one could
employ for this purpose, there are correspondingly infinitely many transforms. But we will
see that this multiplicity of transforms serves well to treat the wide variety of possible
expansions of x in terms of uniform bases of exponentials.

Let S{(t) be a neutral group on W' (-w,m! with generator A of the form {2.9). We
make no assumption here about U(A) ¢ HM+1[-w,n1 except that it be dense in that space

and such that A 1is a neutral generator. This rules out, e.g., domains associated with

-28-
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retarded equations such as

m~1
f=r, ) 1x ™y = ] akx(k)(O) + /" ats) x™(s)ds)

k=0 n
since A generates only a semigroup with a domain of this type.

D(A) = {x ¢ &™"

Given x = x(s) in Hm[-n,ﬂ], we define
x(t,s8) = (S(t)x)(s). (3.18)
By virtue of standard semigroup theory we know that x(t,s) exists and belongs to

Hm[-ﬂ,n] for - < t ¢ ® and there are positive numbers M+, M~, real numbers Y+, '

such that (cf. [6), [12))

+
mreY Eixt n , t>0
H [-w,7]
Ix(t,*)l o < _ (3.19)
B (=, 7] me’ Fixi , £ <0
H (-n,n]
) _mH m+1
Further, we know that when x ¢ D(A) < H [-n,7), x(t,*) € H {-n,n] for all t and
d x(t,~)
—__E€L~ = A x(t,*) .
From the form of A , it is clear that, for x ¢ U(a) ,
XA(t) =z x(t,0), - &t < @ {3.20)

is such that X, agrees with x on [-7,7] , and thus represents an extension of x
from f[-w,m] to (=»,») determined by A - and hence by D(A) since the functional form
of A itself is constant.

Proposition 3.3. The function x,(t) has the following properties:

m

(1) xp € H'[tq,t,] on any finite interval [ty,tp) , i.e., xp ¢ Hooe (Z0r2) i
(i1)  with Y%y~ as in (3.19), e'*tx;“)(t) ¢ LPlo,») for
Re(d) > Y', ¢ LP(-=,0] if Re(A) < Y, 1 S p< ®, k=0,1,%%¢,m1 ;
+
wte? ixe i , t20
H (=u,7)
(111) = < _ (3.21)
HO[-me, me) we’ Eixi o , £ <o
H {(-n,7]

Proof. All of these properties follow readily from the fact that, for s ¢ [t-u,t+n]
xal8) = x(t,s-t) = (S(t)x)(s-t) ,

and the estimates (3.19).
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Definition 3.4. The LA-transform of an element x ¢ Hm[~n,n] is the Laplace transform

of xp s defined b

® e'thA(t)dc, Re() > ¥*

Ly(x,A) = (3.22)
A 0 -At -
- [T e x(t)ae, Reth) <
-0

o,

and extended to other values of ) as described below.

-1
Thereom 3.5 The operator A has compact resolvent R(A,A) = (AI - A) , defined in

p(A) the resolvent set for A , which consgists of the complement with respect to the

- +
complex plane of a countable set of points, od(A) < {Aly < Re(X) < y } . For each

X € Hm[-n,n] .
LJxA)= (R(A,A)x) (0) (3.23)

and is thereby extended, as compared with (3.22), to a meromorphic function of A ,

analytic on p(A) .
Proof. We begin with (3.23). Since A generates a group S(t) on H"(~n,n] , for any
complex A the operator A - AI generates a group on H™ (=7 ,n],
syt = e s(e) .
Now let x « D(A). Then S(A,t)x ¢ D(R) = D(A - A\I) and
L s(L0x = (A= ASOLE)X = SOLE) (A = ADx .

Using the fact that A , being a generator, is closed together with the convergence in

Hm(—ﬂ,ﬂ] of the integrals

J7 S(OLE)(A - ADx dt, Re(A) > Y, (3.24)
0
[7SOLE (A - AI)x at, Re(M) < ¥, (3.25)

0
+
we see that, working with the case Re(i) > Y ,

o0 a0
[T (A - aDs(A,t)x dt = [ S(A,e)(A - AI)x dt =
0 0

g; S(A,t)x dt = 1lim S(A,t)x - S(A,0)%x = =x .
t o

o
8
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Since this is true for all x ¢ D(A) and since A is closed, S(A,t) bounded, D(A)

dense in

A similar computation applies to Re(A) < Y . Thus }

for Re(l) > Y+

we conclude that the integral on the left of (3,26) is in that space. Since 6(0) is in

m+1

W l-n,7]

H [~m, W)

It is easy to see that

4
if mo>

respect

(
S0y,

6(0)[

1, or for

to Ixd 2
L {-7m,mm -
A similar argument applies for Re(A) <y .

Re(A) > ¥ .

That R(X,A)

to show

then W is pre-compact in Hm[-n,n]. From the form (2.9) of A, w= (AI = A)- z, or

that

W= {we Hm[—ﬂ,ﬂllw = (A ~ A)-1z, z ¢ Z bounded in Hm(-w,ﬂ]}

(AI - A)w = 2

If m=

For

and then (3.19) gives

0, (3.29) is void.

O

or Re(l) < Y- . Now the range of A is contained in Hm+1[-ﬂ,ﬂ], 80

00
[ stk ae) = <

[Psutix dat) = [T (s t)x(0)at = [7 eAE x,(0)ae = L (x,)  [3.27)

is holomorphic in p(A) 1is a standard result, see e.g. [6]. In order

(A1 - A)-1 is compact, we show that if

gives
W™ ) o aw™(g) + 2'™(g) =0, 8¢ (~n,7] . (3.28)
WE D 0y - awl® 0y + 2K 0) =0, Kk =0,1,2,000,m1 . (3.29)

Re(\) > Y+ we have, as we have seen

(A -21) [ s\, t)x dt = =x , x ¢ H [~m,7] .
4]

00 -1 m
[ sti,t)x dat = (AT - A) 'x, x e H [-m,7), (3.26)
0

S0, (A - A %) = (A - Aan) " xi0) .

0 0
x ¢ D{(A) when m = 0 . But the last integral is continuous with

ever: in the latter case. Thus (3.23) is established for

1

w(0) = ((AL = A)""

20 = [T et z,(t)at
0

+
- - 2
lwi0)] < M+ﬂzl e (22-1)r Re(A) o’ 284w

Hm[-ﬂ,ﬂ] =0

{3.30) '

z BO(X)“zH .
Hm[-n,n]
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We conclude that if |zl n is bounded, then |w(0}| is bounded. Since 1z¥(0)]
H {~n,n)
< izt m , k= 0,1,2,0¢¢ m=1, (3.29) may be used successively for k =
H {-7,n)
0,1,2, **+,m=1 to see that
1w ¥ o) < B, (A 1zl . k=0,1,2,0m . (3.31)
[-“l"]

Combining (3.31) with the differential equation (3.28) for wi® e see that the elements,
w, of W are such that %), x = 0,1, see,m are pointwise bounded, w{™?'1) is bounded
in Lz[-u,n], when Z is bounded and it follows that R{A,A) is compact for
Re(}) > Y+ . A similar argument applies to Re{}) < - ¥~ and the "resolvent identity"”
(cf. [6])
(A+wWI-a""=01-2a""a+p0r-a""
then shows R(),A) to be compact for any A ¢ p(A) . Familiar results on compact operators
{6] shows that
(AL = M%) (0) = (R(A,A)%)(0)

is meromorphic, having a countable set of poles of finite multiplicity in Y~ < Re(}) < Y*
which have no finite accumulation point. Since we have seen that (3.23) is true for

Re(A) > Y+ ., Re(l) < Y~ , that formula may be used to extend the definition of

LA(x.X) to p(A) . The proof is now complete.

It is natural to ask if every neutral group on H™[a,b), having a generator of the

form (2.9), has associated with it a unique generating functional n Hm*‘[a,b]' such
that D(A) is the subset of H™ a,b]' given by (2.10). The answer to this is in the

affirmative. We use Hm[-w,nl for the proof here but the extension to other intervals is

immediate.

Theorem 3.6. Let A , having the form (2.9), _be a neutral generator on Hm[—v,n]. Then

1
there is a unique n ¢ HM+ [-n,m)? = H™[=n.1]" such that ln# 1 =1 and D(a)
H {-n,m]

has the form (2.10).
Proof. The proof is much the same as that given for Theorem 2.4, sliahtly abstracted here

because we do not know, a priori, that we have any uniform decomposttion to work with.
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Let A bhe a neutral generator on Hm[-ﬂ,ﬂ], let xA(c) denote the extension of
x € H'[=7,7] to (-=,%) as described by (3.20) and let M", M~, v*, ¥~ be as in
(3.21). Let us note that each x «¢ H“""[-w,ﬂ] can be uniquely represented as
x = (x{(0), x'(«)), x' ¢ K" [-n,7] '
and
e - Ix(0) )2+ fxeii? .

R [~m,m) Hm[-ﬂ,ﬂ]

+
Let a be a positive number greater than Y . Let

z(t) = x'(t) - ax{t), t e [=-m,m] (3.32)
zA(t) = (xA)'(t) - a xA(t), -0 ¢ £t < », (3.33)

Then 2z eHm[-w,n]. Let us define, for t ¢ [~m,m) ,

(A - al)s
e

x(t) = - [ ¢ e™*2)(0)ds
0

= -l (e""z,a) = ((A - an) " e?t2) (0) (3.34)

-1 -1
= (eAt(A - aI) z)(0) = ((A - aI) z)(t)

and let xA(t) be defined similarly for ¢t ¢ (-w,») , extending x(t). The fact that
b a»> Y+ ensures the convergence of the integral and the boundedness of (A - a]:)'1 .

Since

(A - an)”! etz = &Atr(a - a1)7 2]

: - m+1 ~
- and (A - al) 1z e Dtn) < H [~m,n7] , we conclude that x(t) 18 strongly differentiable

with respect to t and

x'(t) - a x(t) = (A - al)x({t) = (eAtz)(O) = z(t), t < [~7m,7m) (3.35)

the relationship extending to

(xA) (t) ~ a xA(t) = zA(t), t £ (=,0) (3.36) L-

Let

X T X + X . (3.37)

-33-




From (3.32), (3.35), (3.36), (3.37) it follows that
X(E) = ax(t) =0, t ¢ [-m,a], (X)'(t) =~ ax,(t)=0 t ¢(= .

It follows that

a

x(t) = % X(0) = e%(x(0) - x(0)), t € (-m,m ,

(6 = e2%00) = ¥ (x(0) - x(0)), t ¢ (=) .

We see therefore, that every x ¢ H'[-7,7] can be uniquely written as a sum (3.37) where

x has the form (3.34) for z = x' - ax ¢ H™[-n,7) and

x(t) = eE(x(0) - x(0)) = e2F(x(0) - ((a - an) '2)(0))

-1
25 (x(0) - ((A - aI) (x' - ax))(0)).

If we let i be the one dimensional subspace of Hm+1[-n,n] spanned by et and if we

- - 1
let X be the range of (A - aI) 1(D ~-aIl) = P in Hm+ {=n,m] (D is ordinary
m+1 m -1
differentiation, D - al: H [~m,n] + H [-m,7]) , and the range of (A - aI) is in
Hm+1[—u,u]) .« Thus

x = (A - aI)-1(D ~ al)x =

X

Xt =Y =m0y, xz0x.

It is easily seen that P and Q are projections, not in general orthogonal, such

o

that
PO=QP =0, P+Q=1I,
Corregpondingly we have dual projections P', Q' onto dual subapaces X, §' in
Hm+‘[-W,ﬂ]'. The space X' 1is one dimensional. Let n be the unique element of unit
normm in X' . Then
(x,n) =0

for all x ¢« X while

.

(o 0y 20,

We now show that

Dtay = x = {x . Hm+1[-ﬂ.ﬂ}| (x,n) =0},
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a
The second equality ic clear. As for the first, it is enough to show that X = range of

(A - aI)~'., But this follows because, if, x ¢ (A - aI)~', (D ~ aI)x = (A - al)x and

follows from the fact that R(A - aI')~! = W(a)

Px = x » That n § H {-n,n}" is dense !
in Hm[-n,ﬂ] . The pronf is now complete. f

Theorem 3.7. Let x ~ Hm[-W,w] and let

v(X) = LA(x,X)

be the L,-transform of x . Then

y{r) = wo(X) + w’(k)

1/) with no constant term:

is a polynomial of degree at most m in

where WO(X)

¥y v2 ¥m
'J{](X) = - + F + see 4 _;1; , (3.38)

holomorphic outside ¢o(a) v {n} and having

and w‘(k) is a meromorphic function of 1\ ,

the following properties:

(i) with A = £ + in , there exigts M(p)} > 0 such that
Y + |6+ 4 -n"‘we AIE SO LN < M(p)ixh
14 (~oo, @) H [~7,7) (3.39)

+ -
E?2p>Y ,E<C-p<yYy .

{1i) Let T o F1 be a contour consisting of the small circle, PO .

centered at ¢ and lying in p(A) together with

+ -
Py={E+inl=mcnce, £=tp, p>max(y -y )},

[
-
—

both oriented in the positive direction. Then
. At 1 At
x,(£) = 5 [ e Yp(hrah + — [F ety (ar , (3.40)
0 1

the first intigral being void and the second taken in the l.i.m. sense if

m=0, Dafining
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w2 = [y ooB1aad + fla s ™, ¥ 1ad, (3.41)
p,A T 0 T 1
0 1

LA : HY-n,m) » 0A(E LA(Hm[~n,n]) is bounded and boundedly invertible.

(iii) Let y € Hm[-ﬂ,w]' with F~-transform 4(A) . Then

_ 1 1
(xy ) = 5= £ Y (AN + o { OOV, () ah) (3.42)
0 1

independent of the particular operator A used to define Y(A) = LA(x,X) .

Remark. It is also true that

x (t) = —=— S ar (3.40a)
A iy

in the 1l.i.m. sense, but (3.40) is absolutely convergent and yields more information
about the behavior of xp(t) .
Proof. Since
Yir) = fw e-Xt xA(t)dt, Re(d) > y+,
[¢}

and since Xa(t) has the properties noted in Proposition 3.3, we may integrate by parts

repeatedly to obtain

(m=1 ) »00 -
YA = 5%21 + x'io) + oees 4 5___7;191 + lﬁ /e xtx(m)(t;dt
by A 0

(3.43)
= wo(l) + W1(X) .

A similar computation is valid for Re(XA) < Y . Since wn(x) is holomorphic except at

0 and y(}) is holomorphic outside O(A), ¥,(1) is holomorphic outside o(A) {0} as

claimed. Also from Proposition 3.3 we see that

+
YE ™ e L2i0,.
A
and then
m 1 + lem o -(X-Y*)t —y*t (m)
o+ g0 = { —_ )] e e x, " (t)de (1.44)
A 0

is, by virtue of Plancherel's theoren, square inteqrable on any vertical line in the complex

plare lying to the right of Re()) = y* . A similar result holds for Re(A) ¢ y . The

‘M ,.m
inequality (3.39) follows from the boundedress of (1 + [*: /3 on Plancherel's

¥

e ——— e

SR




voe e R

theorem and (3.44).

Formula (3.40) is just a modz¥ cation of the familiar Laplace inversion formula. For

Re()) = £ > Y+ we have
: 0 ' t <O
leium, %; IR e(£+1n)tW(€+in)dn =
R+ » ~R L xA(t), t 20
and for Re(\) = £ < Y we have
x (t) , t <0
RGN, ryinyan = A

oilam. %" f
> ® R 0 B t>0.

(The situation at t = 0 as actually slightly more complicated but those complications

have no bearing on what we do here.) Thus if F1 ® consists of the two line segments
’

ry o= E+imlE=p > ¥" ., Ini < R}

u {E+inlg = ~p < Y , [n] < R}

we can write 1
xh(t) =

+ -
8 3
—e—
o
>
[ad
<
>
Q
>
I

(3.45)
) At 1 A
A [z [ eypnar s z= [ & Ty uar] .
1 1
+ ® T T
p,R 1,R

Since w‘(X) has the form shown in (3.38), (3.43), the integral of etho(X) over paths

joining p + iR to -p + iR, -p - iR to ¢ - iR, tend to zero as R * ® and (3.45)

gives
R R A 0 x s 1 At 6
x (0 = = [ ey e LTS 1[ ety hax . (3.46)
0 1
the first integral is void and the second must still be interpreted in the

Wwhen m =0

l.i.m. sense., Thus (3.40) is proved.
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That the right hand side of (3.41) can be bounded by a positive multiple of

Ixl n follows from (3.19), (3.44) and the form (3.43) of wo(x), together with the
H [~n,m)
U (ky, 2
fact that ]  [x (0)]° < Ux¥ . The estimate in the other direction is
k=0 H {=n,n]

Ix(m)I

2 in terms of
L ('“1“]

obtained by noting thatPlancherel's theorem allowsone to bound
(1 + IAIm)w1(A), and the Schwartz inequality applied to

(k) 1 13
x(0) = oo { AT g (0 aa

0

m=-1
enables us to estimate 2 Ix(k)(o)l2 in terms of the first integral in (3.41). We may
k=0
regard (ii) as established.
Finally there is (3.42) to prove. Let
= ( vee (*)) W [~n n
Yy Y0:Y1, /Y“P1;Ym € ’

and let ¥Y(A) be its F-transform, as discussed earlier. For

x = (x00),x'(0), 00, x ™ 00y, x ™ () € " (=n,m
we have
m=1 Kk " (m)
(xy) = [ yx (0) + [ y (s)x " (s)ds. (3.47)
k=0 -n

Letting ¢ be the LA-transform of x , the estimates (3.8), (3.39) allow us to form

1
Y A dL + oo { v (M () ax

1
'z?i{,
0 1

= o= { ( kgo ykxk + " {: s y_(s)ds]y, (h)ax
m=1

do [ O[] y ™ My (arasly, nar .
r k=0 -

Differentiation of (3.40) with respect to t shows that

m=1 m=1

1 k 1 Xy
— [ (] v a0y man+ s— [ (T g A, 00d
wi T, k=0 X 0 271 . o Tk 1
i (3.48)
=7 ' MLUTIN
k=0

oy e -
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The term
[ (™ [T e* y (s)as)y (Mak z 0 (3.49)
2ni r - m 0
0
because Amwo(x} and f" e)‘S ym(s)ds are holomorphic inside Po + Finally we note that
-7
oA
f e 8 ym(s)ds and Amw1(l) are both square integrable on P1 , 8o the product is
-7

integrable and

1 m (% As
T { A {ﬂ e"Cy (s)ds ¢, (M) dx
fel

1 m m Asg
= lim o [ AT ey (s)as vy an
R*® Pp R ~n

~un [ yMe)(pmp | Amexsw1(X)dA)ds
ST | Fp ®

= [y ts)[1i.m, E%I { A"e*®y (1)ar]as
= R+ ®
PR

. [T ym(s)x(m)(s)ds, (3.50)
-

the last two steps being valid because E%I f Amelaw1(x)dl converges in sz-n,n] to
r
P,R

x(m)(s) ~ using the Laplace inversion formula with

(m)

(m)
A (s),

ATy, () = g" e 8™ (o) ag, x;m)(s) = x s € [-n,7] .
Combining (3.48), (3.49), (3.50) we have (3.42). Since the left hand side of (3.42) is
independent of A , the right hand side is also., With this, the proof of Theorem 3.6 is
complete.

The fact that (3.42) is independent of A , more accurately, independent of D(n),
enables us to define the L transform of x ¢ Hm[-ﬂ,n] as a certain equivalence class of

meromorphic functions.

Definition 3.8. For each x ¢ Hm[-w,n], the L-transform of x , L(x), consists of all

functions w{X) (not necessarily obtained by means of (3.22), (3.23) for some A ) which

-39~

ST 4



are holomorphic on P1 for some p > 0 , meromorphic in the interior of P, , and have

a decomposition
y(r) = WO(A) + w1(k)

with wo(X) of the form (3.38), Amw1(k) square integrable on Fp and such that, with

v(A) = WO(X) + w1(k) = Li(x,k)

for A an arbitrary neutral generator on Hm[-ﬂ,n] ,

1 ~ 1 -
ey { w(k)[¢o(k) - WO(A)]dX * o { W(X)[w1(k) -y, M)1dh =0
0 1
m
for all ¢ e F(H [-n,m)").
It is clear that L(x) includes every function LA(x,X), A neutral generator on
o [-n,7] .
We can define a norm on L(H™[-%,m]) by
1 1
IL(x)llp= sup |_271-rf v ()Y (M AA + { v, (ar]

tell =1
p 0 1 ]

and it may be seen that with this norm L: g f-n,m) > L(dn[-n,n]) is bounded and

boundedly invertible.
It should be noted that (3.42) is not true for all holomorphic ¢ (A) for which
(3.42) is convergent, but only for ¢ ¢ F(H™[ -n,n]'). Consider the following example.
Take m = 1, let A be differentiation (2.9) on H1[—n,n] with domain
D(A) = {x ¢ B [-m,m)|x' (m) = x*(-m)} . ;

Let A be the same operator but with domain

D(X) = {x ¢ H2[-n,ﬂ]|x'(ﬂ) = -x'(-m)} .

e = [77 xe"Tar . .
m

=40~

Let




Then, with (i) = Yo () + Yg(2) being the LA transform of X ¢ n' {=®,7}, with

x({n) = x(-m) = 0, we compute

1 1 _ f3n T,
=T { YOOy AN + o { Py, (M)A -7{ xy(t)de = {" x'(t)dt

0 1

while, letting $(0) = § (A) + P (1) be L_x,0),
A

= [ eggoa 5= [ condinas = 27 xoae = [7 xrenae

mi g 2mi r, AN -

[4}

The behavior of the integral (3.42) for ¢ which are F transforms of distributions with
supports extending beyond (-w,n] will occupy us extensively in Section 4.

One of the reasons why L(x) 1is defined so broadly in Definition 3.8 is so that we

may assert that

Leg™ TV (-m,m) = L™ (-n,7]). (3.51)

If ¢ e L™ -m,1),

W v v _ v
vy = —; T mm‘l e :rrH v
A Iy A P\
v 14 v v
[} 1 m~1 1 m 1
= e~ == 4 eee & + — [ — +t =y (X)]
A XZ A A" A A1

2 WAy e Ln™i-n,51)

according to our definition. To work with LA(x,A) would be difficult bhecause if A is a

-

1
neutral generator on Hm+ [~%,%) and if, for x ¢ H [~7,7], we extend x to Xp and

obtain LA(x,A), there is not, in general, any X a neutral generator on Hm[~w,"] for

which x_ = X, and we cannot, therefore, say LA(x,X) =L _x,0) ¢ L " -, ). 1f

A A A
(3.51) is to be true, L(Hm[-ﬂ,nl) mugt consist of equivalence classes of functions more

general than those of the form LR(x,A).
Let A be a neutral generator on W' {~n,f] and let n be the associated generating

functional in Hm+1[-ﬂ,n]' , whogse exigtence has been established in Theorem 3.6. Let

X ¢ Hm[-ﬂ,ﬂ] and let (i) = L!(x,k). The poles of () occur only at values Xj
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which are eigenvalues of the operator A . If A is simple, the associated eigenfunction

A.s 3 .8 ;s ,
of A must be e J ° If Aj has multiplicity my then e 3 , se 3
2 Ajs mj—1 st
(s /2)e ,00e, (s /(mj-1)l)e are associated generalized eigenfunctions and
m m
k-1 A.s 3 k=1 A.s
N ST S o W L o
ey K (k=T k=t X(k=1)1
B1 a, Aj 1 coe 0 0
’ ’ Sy e
E = Aj 2 ’ Aj = . . ‘. : . 4
0 0 see A 1
B a 3
m 0 0 oo 0 A
" 3 3

because A agrees with differentiation on its domain. These properties are all reflected
in properties of the generating functional n and its F-transform, ¥(A) = F(n,\). &

simple eigenvalue, A, , for A corresponds to v(\) = (exs,n) having a simple zero at

i
Xj' while an eigenvalue Aj of multiplicity my is such that «(A) has a zero of
multiplicity my at Aj . The equations
sk-1 Ajs
( =——— = = oo
(k=171 e . N 0 k 1,2, Mmoo,
are the same as
k=1 A
1 4 8 = 1 (k=1) = = “cer
(_k:T)—l (:;10_1 (e 'n)lA=A (—m Y (xj) o, k 1,2, ,mj-

We show now, at least for a certain class of generating functionals X , that the
poles, with their associated multiplicities and residues, of Y(}i)= LA(x,X) correspond to
expansions of x 1in terms of exponential, or generalized exponen+tial bases for

Hm[-n,n] .

Theorem 3.9. Assume that the region, R enclosed by the contour F1 of Theorem 3.7 can

be divided into subregions Rj , =© < j < » , by means of paths cj joining the line

Re(l) = p to the line Re()l) = -p , oriented in that direction, so that ey - the portion

of Re(}) = -¢ between <y and Cy-1r ~C4auq and the portion of Re(})) = p between €
and cj form a closed contour Cj surrounding finitely many eigenvalues
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A WA JEETINY of the operator A , the C, having disjoint interiors. Assume
j.1"73,2 jrnj - 3
further that for each x ¢ Hm[-n,n], with Y(A) = LA(x,X)
um [ My, 0llax = o . (3.52)
13]+= °y

Then, letting mj 2 be the multiplicity of xj,l' g = 1'2'°"’“j , we have the unique

representation, convergent in Hm[-ﬂ,ﬂ] ,

x= 7 x (3.53)

n m A

E i,l sk-?
xyeor = L0 L vy ) B

jrzs )

’

where w_k(xj 2) is the coefficient of A-k in the Laurent expansion of Y(A) about the
— ’ k-1 A S

8 .2
pole Xj,l . Thus the spaces X, spanned by the functions k-1 © .

1= 1,2,-‘-,nj A k = 1,2,-~-,mj I form a strong decomposition of Hm[-ﬂ,ﬂ] .
r
Proof. Very little is required here except the inversion formula (3.40), which for
8 ¢ [-7,7] reads
1 1

As As
x(8) = 5 I e wo(x)dx+m { ey ax g

0 1

the significant work lies in verifying (3.52), which leads us to the work of Sections 4,5.

We may assume the circle T chosen so small that it excludes any non-zero

0
eigenvalues of A . If AO 2 0 is an eigenvalue of A of multiplicity m, , the first
integral becomes
”% k=1
Vo (0) e . (3.54)
. - k=1 0,-k (k 11!
We write [ =T + T for each j , where [ = C, « Then
170,37 1 ’ 1.3 Ii%<j i
1 As 1 As 1 As
FITY { ey, Ma = 5 [ ey nar + 5 [ e vy 0an .
! T1.3 Ti,3
_43-
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The first integral, since it encloses finitely many poles of w1(k), can be written as

n m

i=3 3 3,2 k-1 A s
(Y Yy, Yy,0 oo @ D) (3.55)
1=~3 f=1 k=1 ! !
where W, (A ) 1is the coefficient of -1 in the Laurent expansion of y
ket (-, ok !
3R

about the pole A Since wO(X) is holomorphic except at 0 ,

38T

Ve, a0 T Yy

except for the possible case of a zero eigenvalue. For that case the corresponding term
w_k(O) = wo k(0) + W1 k(0) , the first term coming from (3.54), the second included in
[ =

(3.55). Thus

1 As 1 As
51 { e Y M ar + { ey nd
0
1,4
1=94 .1k k=1 A, s
S A G S AT TR u P I

f==g =1 k=

To obtain (3.53) it is only necessary to show that, with

~ 1 Az
xj(s) iy { e \D‘()\)d)‘
T
we have 1.3
lim Bx, 1 n =0 . (3.56)
e H [=m,%]

Differentiation gives

e = f Sy e, k= 0,1,0eem,
F

the validity of differentiation under the integral sign being assured by (3.39) of Theorem

3.7. Since ex' is uniformly bounded for s + [=-n,7} when Re{(l) is bounded, the fact
that
1im 3%; elaka1(X)dx =0, k =0,1,2,¢00,m, (3.57)
Jaee c,(c )
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uniformly for s ¢ [-v,m), follows from (3.52),

Let us define Wj(k), A€ F1 , by

W1(A), X o€ Y1 o P1'j
‘{'j()\) = . .

0 , A€ F1 - F1’j

Then ;;k)(s) is equal to the sum of the integrals in (3.57) plus the sum

1 As .k 1 s k
i e e A ak + o [_ e Y, oa (3.58)
1 1

P: = {A|Re()) = p}, F; = {A|Re(A) = -p} . Writing A = £ + in , the first integral is the
k~th derivative of the inverse Fourier transform of Tj(p + in), =® < n <« , multiplied

by PLL N Since XkW1(A) € L2+ ’ k = 0,1,2,¢¢s,m , the Plancherel theorem shows that, as

a function of s , the first integral in (3.58) is in H"(-®,2) , Since the cj tend to

infinity as |3l + @ , it is clear that

1im 1ei*3(p + 1-)“1'3,(9 i1, =0, k=0,1,.m,

b ol Lr+
3
and, applying the Plancherel theorem again
A Xy (oan < lim 1] e aKy (nan _
3 X + 1 2
L T-n.m) oo F1 L~ (~w, @)

lim f* e
r
1 (3.59)

j-nn

k =0,1,2,¢**,m .

A gimilar result is obtained for the second integral in (3.58) and, combined with (3.57)

and (3.59) we finally have (3.53), completing the proof of the theorem.

- o~ B R T — -

r 4

A:I.L_“- "
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Lo 2
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4. Functional Calculus, Convolution, Connections with Control and Observation Theory.

Let A be a neutral generator on W [-n,7)]. Let x € Hm[-'n,w] and let
Y(A) = LA(x,X) . If S(t) 1is the group gererated by A , then S(t) x ¢ H™(-n,n] for

any real t . There occurs to us then the guestion: What is the relationship between

LA(x,X) and LA(S(t)x,X)? since S(t) = e, our first thought might be that

LA(S(t)x,X) should equal e)‘twﬂ) , but it turns out that this is not the case - indeed
ehw)‘) is not in general the Laplace transform of any element in Hm[—n,w] .

In the preceding section we have developed the inversion formula (3.40) for
LA(x,X) . But it is clear that if J(X) is any function meromorphic in the interior of
T, = (AIRe(d) = p} u {X[Re(X) = -p}

and analytic on 1"1 itself, and if

9 () = GO(AH 01(>\) ' (4.1)
%(X) having a pole of order < m at the origin, otherwise holomorphic on I“| U Int(l"1)
(>T) anda 9 (0 = 1 3., F.0 ¢1%T,) , we can form
-0 1 A" 1 1 1
- At At
£lt) = 5 e ootx>dx * 5T [ e g, (4.2)
I‘0 I‘1

The function £(t) will have exponential growth in the right and left half planes and, for
Re(u)> p or for Re(u) < -p , we can form the Laplace transform of &£(t):

o) = [~ e ¥t £(e) at

0
=T et [ T tMomar e o [ e nar]ae
2ns ¢ 0 2n1 1
0 T r
0 1
9 9
B NEY . L L o
Co2mi f o= A FL T A
n ‘1

(4.3)

If we let

Fle) = 5%— oot 8 (X)dx




then the fact that Am01(X) € LZ(P1) shows that e PtZ(t) ¢ H™{o,»), e°*¥(¢)
¢ H"(~»,0] . sSince the first integral in (4.2) is just a polynomial in t , this remains

true with Z(t) replaced by £(t). Integrating by parts, as in (3.43), we find that

(m-1)
e(u) =€(0) + vee +£___ﬂ +_1_ 8. (n)
H d“ um 1

eo(u) + 9(u) .

When ©(X) is the Laplace transform of a function £ , the formula (4.2) returns the

function § and 6 = 9. Thus the map

P:d +8 (4.4)
is a projection, easily seen to be bounded with respect to lﬂlD S [I00|22 +
m 2 1% L (FO)
e+ [AD ol(l)“ 2 J on the space of meromorphic functions (4.1), the range of

L (Pl)

P consisting of Laplace transforms which have that form.

The characterization of LA(S(t)x,A) is developed along these lines. Clear:'y, for x

{and hence S(t)x ) in H™[-w,73) ,

(S(t)x)A(T) = (S(t + T)x)(0) .

Hence, for Re(u) > p

Listerx,m = [~ e™ st + nix)(0)ar .
0
But
1 At + 1)
271 { ¢
0

(s(t + T)x)(0) = xA(t + 1) = Wo(l)d\

1 Mt + 1) ‘ 1
* 5l { e voan v = Logh
1

Assuming Re(u) > p still,

- 1 At +
Ltsteix =" e — [ e Dy oarar
i 0

0 r,

ST L MET T G anar

2ni 1

0 T,

At At,

e VOH) 1 e v1(\1

ar . (4.5)

DU P S-SR SN




A similar calculation with the same result, is valid for Re(u) < -p . It is easy to

check that we also have

L(s(e)x,u) = (SCEIR(K,AIX)(0) = (e""R(u,A)x) (0) (4.6)
and this provides the analytic continuation of LA(S(t)x,u) to € - o(A). A further
characterization of LA(S(t)x,u) = LA(eAtx,u) is clear from (4.5):
L™, = pee"Sycu))

where P is the projection (4.4).

The success of this project suggests a slightly more ambitious one. Let B8(n)

consigt of functions f entire in the plane, satisfying in each strip ~R < Re{X) < R a
polynomial growth condition, with M independent of R ,
I£O01 < M1+ A" (4.7) e

and let By(n) be the subset of B(n) for which the stronjer condition

M (1 + DT € LEODT <M+ DT (4.8) .
is satisfied.

Our objective is the development of a convolution theory for the spaces Hm(-ﬂ,n] B
n
H (~m,7]' and its expression in terms of the transforms LA and F. 1t is a curious
and significant fact that the most important results (for our purnoses) have to do with the
m+1 .
case of an element y ¢ H [=m,n]', with an additional restriction to be noted shortly,
m
and an element x ¢ H (-m,w] .
Throughout the remainder of the section we will make use of the following system of
contours, FO, F1, CO' C1 . We assume that p is a positive number such that (cf.
- +
-p <Y <Y <p

and F1 is the contour consisting of Re(A) = p , Re(A) = -p , positively oriented, The
contour Ty is a circle, centered at 0 , lying in 1Int( ;). The contours Cj, Cq are
similar, with p replaced by p - 6, § > 0 , and Cg 1is inside FO . A typical ,

configuration is shown in Figure 4.1.

Y
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—p

Re(}) = p

Re ()

Figure 4.1

We shall suppose that ¢(A) 1is the F-transform of an element y ¢ H“*1[—ﬂ,n]' with
the additional property that ¢ € B(n) for 0 < n<m and we shall suppose that
P(A) = LA(x,A) is the A-Laplace transform of an element x ¢ Hm[-ﬂ,w] , A being a i
neutral generator on Hm[-w,n] . “T
'

Lemma 4.1. With v, b, Fo, P1 as described above we have

1 v(u)wo(u) 1 v’(u)w1(u)
e OOV = | 2n1 e % %t IR du]
T r, ¢
0 1
v, (u) Yy, (u)
? +[ E%I / — O au+ E%I __f—:l___ du
! ¢ PR ¢ “
i 0 1
2 QY (X) + P(2Y) () (4.9)

for A in the shaded region D = D* y D~ shown in Figure 4.1. Here as previously,

(m=1)
- x(0) cee X (0)
R w m
A
! R
by = o [T e Mg !
1 Am 0 A
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Proof If [ is the (positively oriented) boundary of D then it is clear that for

D
A eD
P) : = ) Flulytu)
OO =g SR
D
.10
, 2 (ugy (1) . P tudv, () (4.10)
= s { — du + 5 { —_— du .
D D
Because the only singularity of WO(X) is at A =0 and ¥(\) 18 entire
Yu)p, (W) ¥y, (n) iy, (1)
1 0 1 0 1 0
o ) W= T o Wty [ ooy e eam
T To %o

Since the only singularities of w1(u) lie in the interior of €, , it is clear that

s, (w) 1 w(uW,(u)
271 u - A

u - A T

D N

du = du (4.12)

A

2ni T
where FN is the positively oriented boundary of the region which lies between F1 and
Cy and the line 1Im(A) = N, Im(A) = =N . Since |Jyo(A)] < M(1 + Ian® throughout the

region under consideration and a variant of the Riemann-Lebesgue theorem shows that

lim |x|"‘|w1(x>| =0
[Im(A) | + =
[rRe(X)| € p
and m 2 n we have
7 (W) vy (w)
lim — —_— du
Now 2mi T - A
N
4,13
1 ¢(u)w1(u) 1 w(u)w.‘(u) ( )
pET O e ey M e

c
1 1
provided the latter two integrals are convergent - which is clear since ¢(u)w1(u) and

i—%—: are both square integrable on ¢, and F1 . Combining (4.10) ~ (4.13) we have
{4.9) and the proof is complete.

Let us obgerve that, since v (A) satisfies condition (4.7) in the strip =-R <
Re (A\) < R for every R > 0 , we may allow both o and r, = radius of Fn to tend to

infinity, keeping C; and Cy fixed. As we do so, the formula for P (¢y)(X) s

unchanged. Thus we may define

Sk

-

aklib,




A e it ot et

Fluy, (1) Cludp, ()

JLI A Chis R I Asd e hiad

2ni M- 2ni A~
C0

Pley) (X)) = au (4.14)

+
for any X 1lying to the right of the right hand half, C1, of C1 and tor any A lying
to the left ofthe left hand half, c,' , of ¢y . BY varying Cy it may be seen that

g(A) = Ple(P)(A)

may be defined this way for Re(A) > Y+ and for Re()) < y- » A meromorphic continuation
of g(l) across and into the interior of Cqy may be obtained by noting that (A)y(X) is
meromorphic and (letting rO,p tend to infinity)
f£(A) 2 QW)

is an entire function. Thus the identity

glA) = ()Y (A) = Q) (X)) = w(X)W(X) - £(}) (4.15)
which (4.9) shows to be valid outside C, (taking ry,p Sufficiently large) provides the
desired meromorphic continuation. ‘We see than that (4.9) extends to the whole plane, with
the exception of the poles of VY(X) , enabling us to write ¢(A)Y(A) as the sum of an
entire function f£(A) = Q(¢Y)(X) and a meromorphic function g(A) = P(yP)(A) , This is

obviously the same process as occurs in the development of Laurent series.

Proposition 4.2. There exists a function z (= ZA)' defined for - < t < @, with

e " 0,%), Re(A) > ¥
e Taey o n . (4.16)
H™ M(-w,0) , Re({A) < Y

such that g(A) is the Laplace transform of 2z . Further, there exists an element u

(=uA) ¢ H? [=7,m)! such that f(X) is the F-transform of u . Both 2z and u are

uniquely determined by ¢ {(hence y) and ¢ (hence x and A ).

Proof. Let T _,[ ,Cc ,C be defined as in Lemma 4.1. If Re()) > Y+ it may bhe arranged

(possibly by making P‘ slightly asymmetric if y+ # y7) that the path F: lies to the

right of C: and to the left of X . Then

T - e —————-Y

-




= glu)
(Pe) () = 3 { o,
1
RN f 1 [ KN f w(v)wo(v) O + 1 w(u)w1(v) dv]
2ni A -y 2ni U -V 2ni W -V
T C c,
= [ etvv v)( A I 1 ! au) dv t-.‘
2ni c 0 2ni T X~-u pn-v i
0 1
1 1 1 1 ;
—_ —_ - )
2ni W(v)¢1(v)( 2ni { A=py u-=-v dujdv
1 1
v(v)y, (v) (VY (v)
1 Q 1 1
= 21 g Y -v P = g A=V av
0 1
= g(i) .

It follows that if we set

- vt
z(t) = 5= [ eTv(viy (viav +

o

that g{A) 1is the Laplace transform of 2z(t). Since vm_nw(v)w1(v) is square integrable

on Cy , for

At_(k) Z 1 k_(v=A)t 1
et 2l = g vKe s(v)yg (v)av) + 1

0

k = 0,**s,m-n ,

the last integral being taken in the l.i.m. sense :1°f

eAt x a polynomial in t .

conclude that the left hand side of (4.17) is in L2[0,w)

follows.

To complete the proof we must establish that Q(9y)(A) is the

element u ¢ Hn[-ﬂ,ﬂ]'.
Using the fact that ¢()A) satisfies (4.7) together with the fact that
(m=1)
-3
Y(r) = 51%1 + oeee 4 X oy , L [T e Ex(™ (t)ae
b "0 !

A to the right of Cy

1
2ni

we have

The second is in Lz[o,m)

[ "oy, (viav
C1

[ e M)y (vyav

©

(4.17)

m=n . The first integral is

by the Plancherel theorem. We

for k = 0,***,m=-n and (4.16)

F-transform of an
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is of order T%T we see that ¢(A)y(A) may be bounded by a constant times (1 + lkf)n-1

on vertical strips in the complex plane. Since g{A) 1is a Laplace transform, it is
uniformly square integrable on vertical lines. Then (4.15) shows f(A) has the property
that £(A)/(1 + IXI)n is uniformly square integrable on vertical lines in the complex
plane. Using (4.8) again, together with (3.5 a,b) we see that there is a positive number

M such that for all real §

e+ (e s sy | o _tise" ¢!

f 7
(1 + 1§+ in)® (1 + 18] %2

»

Since g , being a Laplace transform, satisfies

~ nlgl
lgt& + im ! < MBe
(1+ 1en 72
for some Q > 0 it follows that
. - mlEl
| —£L& * in) L Me 7, (4.18)
14 (£ + in) (1 + 1g)) "2

-

for some M > 0 . Together with the uniform square integrability of f£(A)/(1 + |)\|)n on
vertical lines, (4.18) shows, using Theorem 3.2, that
£(2) = Fu,)) (4.19)
for some u ¢ Hn[-n,n]'. This completes the proof of Proposition 4.2.
n+1

Definition 4.3. lLet vy ¢ H {-m,71' and satisfy (4.7) while x ¢ H" [~7,%], m > n .

The A -convolution of y with x is the element =z described in Proposition 4.2. We

write

= *
z (y x)A . (4.20)

The remainder from the A -convolution of y with x (referred to as just the remainder

when y,x,A are understood) is the element u described is Proposition 4.2.

It will be recognized that the decomposition of the product ¢{X)Y()A) which we have

just described generalizes one already familiar to users of the Laplace transform. 1If
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-1
p(A) = UL a1x“ + see + an_1x 4+ a is a polynomial of degree n in A and p(D) is

n
the corresponding polynomial in D = g; and if x,x'(t), -",xn(t), t 2 0, have Laplace
transforms, it is well known that
L(p(D)x,A) = q(A) + p(AL(x,A), (4.21)

where q(A) is a polynomial in X of degree < n-1. If x is any linear combination of

exponential functions, ¢{X) = L{x,2) and g(A) = Lp(D)x,A) are rational, i.e.,

meromorphic, functions. Letting £(X) = =q(A), p(A) = v(X), £(2) and ¢(A) are
holomorphic and (4.21) becomes
g(X) = ¢(NP{X) = £(X)
in agreement with (4.15).
For reasons which will soon be apparent, our main interest lies in the case where
N m+ 1
m=n, so that y , satisfying (4.7), is an element of H [«=n,m)"'.
Theorem 4.4. Let x ¢ H'[-m,m1] and let x, be its A-extension to (-=,®). Let

Yy € Hm+1[—ﬂ,ﬂ]' satisfy (4.7). Then

(y * x) _(£) = l.i.m. {y,t (£t + ) ) (4.22)
A ix - £ 1 s A
n Hm[-n,ﬂ]

in the sense that, for Re(l) > Y+, Re()) < Y, resgectivelx

lim “e-xt((y'x)A(t) - (y,En A(t + o))l =0
n+o ' L”[0,®)
i -At
lim le ((y'x)A(t) -(y,En Alt+ ) Y =0
n+*e 4 L (-mlol

for any sequence {En}f D(a) converging to x in H"{-w,m}. If x ¢ D(A) then

(y * x)p is continuous in t and

* = { +0)) . .23
(y x)A(t) y,xh(t ) (4.23)
Proof. We begin with x ¢ D{A). Then the right hand side of (4.23) is well defined and,
1
since XA(t + ¢) (the restriction of Xp to ([t - 7m,t + n}) 1is continuous in "m+ [=-m,m}
when x ¢ D(A) , it is continuous as a function of t . Exponential growth as t * t® |s

easily established and we may form the Laplace transform
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L(y,xA(t +0)) = e e At ¢ YiXa(t + 0) Yae ,

,’g
0 . i
Re(d) > ¥ {
(4.24) ‘
0 =t :
f e ¢ y,xA(t + ¢) ) dt, .
oo |

Re()) <y .
-

From (3.42) we know that if ¢(A) is the Fourier transform of y and

wt(l) = wt 0(A) + wt 1(A) is the A-Laplace transform of Xy (t + ),

Cyoxy (e + o)) -—— f v (Y, O(A)dx+— )’ ¢ (Y, LA)dk .
0 1

Here and in the following, wt N t 1:W0W1 are computed relative to Hm+1[~n,ﬂ],

Hm+1(-n,n]'. Thus

9
[+ 03 a |
0 1 m
Ve Xt 7
p\ A
etc. Let the contours FO,F1,CO,C1 be arranged as in Figure 4.1 again. We have the

formula (cf. (4.5))

ey () "y, (v f
Vo) = g av + | ! av !
2ni ¢ 1=V ni L K~V E

0 1

e g‘,u»;.‘&»'wh .

(we have just replaced ro,r1 in (4.5) by Cg, €4) valid for A outside Cy{ in

particular on the contour F1 . From the fact that

(m)
vov) = x{0) . x'(0) 4 see & (0)
0 v 2 m+ 1

\ v
it may be seen that the firsgt integral has the form

heod
W

m+ 1 A=

W (v) [
1 f 0 1 m
U= — + — + ses 4+ (4.25)
ra co x-v A sz xm+1 1
for constants B8 _,B,,***,8 . Since
0 m m o1
1 _2 A A 1 b
A -v A 2 A Am+1 A -V
have
we hav 1 j e W1(V) 1 f ( 9 v o™ ) i
ST —_— = T T ot e+ e w tvyav -
2ri C1 A - v 2mi c, A A2 Xm+1
vt
3 Vm+1 e w1(v)
+ ETTY f —_— ——— dv .
C

Combining (4.25) and (4.26) we see that -




"%y (v) m
1 0 1 1 v v vt
VoM =g | oo v (g e s JeT v mav @27
C c A A
0 1
) e
wt'1lk) * v A ;E:T P dv . (4.28)

Then, noting that the first term on the right hand side of (4.26) extends, in the same

form, inside C4. and using (3.42) we have

1 1
Cyoxp(e + ) m]f_ \a(thlo(X)dA + ?ﬁ{ o v, L )ax

0 1
vt
e Y. (v) m
o 1 0 1 1 . vt )
“wm [ ol ] e [ (g ey mav]a
0 %o 1 A
1 1 il evt"H(‘”
m LWl | s wle
T C, A
1 1
1 vt 1 vt 1 1y v
= om ({ e Yy, (vidv + o5 . € AN ey . (5 + )‘2+ * )‘m+1)“°“"d>‘
0 1 0
m+1 (4.29)
P e g e.) S LTI

2ni T Am+1 A=v
1
Let v be any point on Cy » If T is a rectangle centered at the origin, lying
ingside T and containing v in its interior, then, since the only singularity of
1

1 + = + e + Y is at zero and the only singularities of ¥ -ﬁill lie inside
A A Am+1 XM+1 A=
¥ , we have n 1
1 1 v v 1 v s(\)
—_— + e+ see 4 Aay + L4
2mi [ X 2 m Je2) 21 / w1 oy P
r A by r, x
0 1
1 e(X)
“mr [ o Amew
T
and (4.29) gives
1 v 1
Cyxple + ) =5 [ e t¢(v)¢0(v)d\l vl PVt;(v)w1v)dv . (4.30)
(o4 od
0 1

Computing the Laplace transform for X outside o { A to the right of the right had

branch of C4 shown here) we find using Definition 4.3 that

~56=
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f. Q-Xt (y,xA(t + *)y 4t
0

©  =Atr 1 vt 1 vt
=" e [ eTotviy viav + —o ({ e e(vIv, (v)av)

w1
° CO 1
I R B UL T
anL A -V 2ni X - v v
Co C1
(4.31)

= L{(y* x)A.A) .

Thus
L (y,xA(t + ) A = L{(y * x)A,A)
and we conclude by the familiar uniqueness theorem for the Laplace transform, that (4.23)
is valid.
Now let {zn) < D(A) with
lim x - £ 0 =0

m
n+o H (-n,n]
for some x € H™[-7,%). For each n we have

(y * En)A(t) = (y,En'A(t + o))

with Laplace transform (cf. Definition 4.3 and (4.9))

< fiiifﬂigiii dv + _l— f ii!lfﬁLliﬁl dv
FLEN A=V FLER S A - v *
Now ’ 1 (m)
£ (0) 65(0) ﬁn (0)
YooV T T T T
1 0 =yt _{(m+1)
by, (V) — / £, (riat.
v 0
We reqroup these as {m=1)
- £ (0) E;(O) En (0)
"‘n,o“') = v * 2 oo m Tm
v v
{(m)
3 (0)
~ ’n 1 @ ~vt_{m+1)
wn,1(v) -:E:T_— * m+ g € En,A (t)ge
SR e-vt‘;(m;(t)dt. ;
LI n,

-f 7=




Observing that
(m)} (m)

£ (0) 3 (0)
v () (2 () (B
RN f vmﬂ o = 1 | va o
2ni T A - 2ni r X = v
0 1
we have
V(WY (V) P(VIY L (v)av
1 n,0 n,1
L - = — —_— —_——
(y * D) = 55 P A= o ] PRY :
r
0 1
wut (defining 50,51 with reference to H"{-7,7] now) Definition 4.3 and (4.9) give
eIV (V) vV, (V)
1 n,0 1 1
* = — — —_— —_—
LUy * b = 5 { X - v R {. -y -
0 1

Let us write
* = * = .
(y En)A(t) zn(t), (y x)A(t) z(t)
Then, since z,(t), z(t) have the indicated transforms

1 vt ~ ~
z(t) -z (t) = o {‘ e v (V) Yy (v) = Vo olvhIav
0

1
twr ]
,

The proof of (4.22) then follows the same lines as in (4.17), ff. and the proof is

thw(v)(E1(v) - an 1(v))dv .

complete.
We complete this section with a result which forms the core of our work in Section &,

Theorem 4.5, If nr isthe generating distribution associated with the neutral generator a

on Hm[-ﬂ,ﬂ], if x Hm[-ﬂ,ﬂ] and u is the remainder from the A-convolution of n

with x , then

Flah) ( £00
/

YAy = LA(x,A; = Forn o (4.32)
Remark For our work here we will make the assumption that n . Hm[-w,n]' satisfies (4.R)
but (4.32) is true under more general circumstances.
Proof. It is only necessary to observe that for Cn - Dy, (n,ﬂn'A(t 4.0 20, Hence
n e x)A = 0 almost everywhere and g(A) = L((n'x)A,A; Z 0 ., Then (4.32) follows from

(4.15).

rw




5. Exponential Bases from Neutral Groups.

Armed with the transform theory which we developed in Section 4, we are now prepared
to discuss Question B posed in Section 2. We cannot give complete answers to this
question but we can make some beginnings. We shall suppose that A is a neutral generator
on H™[-7,7] with domain (x ¢ Hm+1[-ﬂ,ﬂ]| (x,n) =0}, n being the generating
distribution in H"[-m,7]'. We shall suppose that ¢(A) = F(n,\) satisfies (4.8) with
n = m. We hope to devote another paper to some significant cases wherein (4.7), (4.8} do
not apply. We will content ourselves here with the statement that it is useless to try to
prove that every neutral generator A corresponds to a generating distribution n for
which (4.8) is valid. By use of the gamma function one can easily construct n (via

F (n,A)) for which A generates a group on H"{=%,n] but (either part) of (4.8) fails.

The work done in Section 4 shows that n gatisfying (4.7) yields a map

B: H'[~m,7] » H" [-7,7]" ,
(5.1)
Bx = u ,
where u is the remainder from (n * x)A » Following a comment by Mihailov in (18] we
will call B the Rary (after N. X. Bary) operator associated with n . It has the
properties set forth in

Theorem 5.1. If B is the Bary operator associated with the generating distribution n

of a neutral group on Hm[-n,n] and if n satisfies (4.8) with n = m, then

(i) B 1s one to one and bounded,

(if) B is onto in the case m(=n) = 0 .

(iii) Let ), be a zero of Ftn,A\) of multiplicity m. Then B maps the

subspace of H™ [-n, ) spanned by the generalized exponentials

At At ~1/(m ~1)! At
e ” , te , , ses , [tmk " Je k onto the dual subspace of

Hm[-ﬂ,ﬂ]' spanned by elements s L= 1,2,‘",mk which have the

. 2-1 At
properties \pk l(t) = (t /(l-1)!]e ]

%, 2




(P, 4+ @ ) =86 , = (5.2)
AT B 2,1 0 g

o)

{p . q ) = 0, L= 1,2,e00e.m (5.3)
ki ket *
if A is a different zero of F(n,x) of multiplicity m_ .
k k

Proof. That B 1is one to one is immediate: if u =0 in H™[-7,n]' then (4.32) shows

that LA(x,A) = 0 which implieg, via the uniqueness theorem for the Laplace transform,
that xA(t) 0 and hence x = 0 in Hm[-n,n} . The boundedness of B 1is an easy
strengthening of the statement u € Hn(=m)(-n,n]' in Proposition 4.2.
To show that B 1is onto when m(=n) = 0 , let
v(x) = Flu,\)/F(n,A).

From Theorem 3.2 y(A) is square integrable on vertical lines in the complex plane and,

with F1 defined as before

- L glv)
8 = 59 { o v (5.4)

converges for A outside F1 « We will show tLat 8(X) = y(A) . Using Theorem 3.2,

(4.8), for |Re(A)} sufficiently large

F(u,)) M
A o= ' €M .5
lwarl }TTETTT ! T eoon % )

Let contours F; B F; be constructed as shown in Figure 5.1, the semi-circular parts of

each being denoted by Z; ' Z; .

Figure 5.1

+
For A insgide FR (i.e., for R sufficiently large)

Yi%l; dv = P(A), ! f %L!L’ =0 (5.6
T




We easily estimate, using (5.5),

- r
1 _Yiv) M 2 de
=/ . _ 2 avl < T —= + o0
i X;QR) A= 1+r72 - % (cos 8) 72

-

as R + ®, M being a convenient oconstant. It follows that

1 ) n YOy oL e
;i: ( 2ni {+ A=V & o+ 271 {- A=V dv) i »

R R 1

and (5.4), (5.6) give
vy =o = o= [ ¥,
Thus ¢(A) is the Laplace transform of
E(t) = 1.1.m.ﬁ ST
Since F(r A)Y(A) = F(u,\) is entire, it followslthat L{((n * £),A) = 0 and hence
n*E=0 so that E(t) = xA(t) if x(t) 1is the restriction of § to [-n,w). Then
u=B(x), x ¢ Lz[-n,n] and B is onto for the case m(=n) = 0 . This result does not
extend to m[=n] > 0 .
To establish (iii) it is enough to observe that if x ¢ Hm[-n,n] is a linear
At

combination of the generalized exponentials (t£-1/(£-1)l)e k then Lh(x,X) is a

polynomial in (A - Xk)-1 of the form

Y Y. Y
lh(x,k) =3 _1x + 2 > + e 4+ ———-—E-—; N
k (A - Xk) (A - Xk)
Then
Flupdy = Fin,hy Lo,
is either nonvanishing at A - Xk (if Y # 0) or else has a zero of order less than m

there, assuming x # 0 .« On the other hand, a zero A _# Ak of multiplicity m_ of

k k
F(n,)) remains a zero of multiplicity m of (u,A). This shows that B maps the
k
subspace spanned by the pk 2 into the subspace spanned by the a g e which 1s the
’ r
subspace of Hm[-ﬂ,l]' whose elements y have F-transforms ’(y,X) which have zeros of

multiplicity m_at A_# A . About 1 =) we have
~ ~ k k
k k mk-l
(U,A) = aO + (11(A - Ak) + cee ¢ Qm -1(A -\ ?( + see

k
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and it may be seen that the finite dimensional linear map (Y1,-",Y g

(ao""'“mk-1) is nonsingular. Hence B maps the subspace spanned by the Px,% onto
the subsgpace spanned by the qk,l and the proof is complete.
We turn next to the question of completeness. Let {Ak|k ¢ K} denote the set of
zeros of F(n,\) and let {mklk ¢ K} be the corresponding set of multiplicities. Here

K is any convenient countable index set. A condition for completeness of the set
L1 At
{Tz—'-_F)Te Pk e® 2=1,2,20m} (5.7)

is given by Levin in (13]. The proof is based on use of the indicator diagram of F(n,A)
and an assumption about the growth of that function similar to (4.8).

When n is the generating distribution defining the domain of a neutral generator,
A, with F(n,\) satisfying (4.8), these considerations may be replaced with an argument

using the representation (4.32) together with the minimum modulus theorem (see {29]), e.q.).

Theorem 5.2. Let n be the generating distribution associated with the neutral

generator A on H (-7, 7] with F(n,\) satisfying (4.8). Let
L-1 At
E = {(t7 /(e=-1)ne lk e XK, &= 1,2,"-,mk} (5.8)

be the get of exponentials associated with the zeros Ak . Of multiplicity me o, of

F(n,\). Then En is complete in Hm[—w,n) .

Proof. It is well known from entire functions theory that F(n,\) must have infinitely

many zeros. Select m of these; call them 01,02, ess cm . Let
m
p(x) = 1T (A - ok)
k=1

and 1t " be the element of L2[~n,ﬂ] whose F transform is F(n,X)/p(A) .
Arguments similar to those given in Section 2 show that En is complete in Hm[-n,n] if

and only {f, with uk the multiplicity of °k'

uk-1 Ukt
E,=E - {t /N Dw Ik = 1,2,%°+,m}
is complete in Lz[-n,n) . As we have seen from Section 2 the operator Aq
(differentiation on #')  with domain described by < XNy ) = 0 aenerates a group on

Lz[-",NI if and only if A , with domain designated hy {(x,n) =0, generates a agroup

m'
on H {=7,n].

F_d




)

kR e o

:’

If E were not complete in Lz[-ﬂ,ﬂ] there would exist a non-zero element I

0 |
o - t2[-n,7] = L2(-n,7]' such that (u,p) =0 for each p of the form 1;
k=1 Akt [;

plt) = (£ /&~1)le ¢ E .
T
: . Since Theorem 3.2 gives
i
( ) = 1 [ F by 1 ax i i
up T A Y |
1 k L
;
[ 1 !
= Res[F(u,k) i ]A =3
(A = x) k
k !
!

we conclude that F(u,A) has zeros at the zeros, Xk, of F(no,k), of at least equal
multiplicity. Hence F(u,A)/F(n,X) 1is entire. Since B 1is onto for m = 0 (F(no,k)

satisfies (4.8) with m = 0) we conclude that there is an element x ¢ Lz[—w,n] such that
F(u,}) E
A) = i,
Ly M = Tt

But then, as we have just noted, | (x,A) 1is entire. From this we can show that

%

L (x,A) =0, implying x =0 .
A0
First of all, the fact that F(no,A) is of order 1 and type ¢ implies (see, e.g.
{13])) that the seros of F(no,l), counting multiplicity must be such that, with N(R) |

denoting the number of seros of F(no,k) inside the disc of radius R in the complex

plane
N(R} € KR (5.9) W

for some positive constant K . !
We know, since A, generates a group, that we can find a contour P1 = F: U F; as 1
shown in Figure 5.2 containing the zeros of P(no,k) in its interior. From the density of
the zeros as described by (5.9), it follows that we may construct paths C:, C; . (the
segments of Im(iA) = r , Im{(A) = -r 1lying between F: and F; ) for a sequence of

values of r = r

n tending to » , such that ’

k3
dis(A, Cr ) > e, all r = r o

for some fixed € > 0 , A denoting the set of zeros of F(no,k). Using the order and type

of i(no,X) together with the minimum modulus theorem (see, e.g. [29), Chapter VIII) we o




_ixp(m +€)
IF(n.X)I>ue“' P Aec, .
n

where U4 1is some pogitive number and ¢ 1is an arbitrarily small positive number. Then,

since F(u,}) is bounded in the interior of T
Ml(" +g)
LA(x,X) < ve R AeC .

r
n

i

i

{

i

|

f

|
The result (5.9) also implies that the C: can be selected so that the r; grow at rates tf

1

which may be bounded above and below by positive multiples of k . Then, since

T

. Il (w + €)
LA (xo,)\) < De

]
F(u,A)/F(nO,/\) is entire it follows that, in the interior of r, . |
0 ’(

i

Figure 5.2
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Combined with the fact that LA(XO,A), being the A-Laplace transform of an element
X € th-ﬂ.w] , must be bounded on F1, we may use the Phragmen-Lindelof theorem for a
strip (see, e.g. (9], Chapter 18} to see that LAO(x,A) must be bounded by a constant in
the region bounded by the contour F1 . But LA(x,A) is uniformly bounded on vertical
lines outside T, and
lim L (x,A) =0

[Re(X) [+
so lh(x,A) , and hence x , must be zero. It follows then that u = 0 , contradicting
our earlier assumption. This completes the proof of Theorem 5.2.
Since the existence of biorthogonal elements in Hm[-ﬂ,ﬂ]' is already assured by
Theorem 5.1, we know that En , described by (5.8), forms a strongly independent basis for
Hm[-n,ﬂ]. This, however, is not the same thing as showing that each element
X € Hm[-ﬂ,n] can be developed as a serieg in the elements of En , convergent in
B [-n,n] . For this we must have properties of F(no,k) which are stronger than those
which may be inferred from the minimum modulus theorem.

It is not necessary to state and prove a separate theorem because we already have
Theorem 3.9. What is necessary is to establish conditions sufficient to guarantee that the
condition (3.52) is staisfied. The representation (4.32) can be very useful here. We
begin with the case m =0 .

Proposition 5.3. Let m = 0 and suppose that n ¢ H1[-ﬂ,ﬂ]' is the generating

distribution corresponding to a neutral generator A (of the form (2.9) with m = 0) on

2
L {-n,m]. If the paths cj, C_j in the proof of Theorem 3.9 can be selected so that

IFin, 2yl > 6, X e cj , A€ <:_j (5.10)
for all 3j and some fixed &8 > 0 , then (3.52) follows and the expansion (3.53) follows.

Proof. It is enough to note that Ff(u,\), being the Fourier transform of an element
u € LZ(—W,WI has the property

1im sup {IFtu, M1} =0 (5.11)
jre A C(C )
lj =2

by virtue of the Riemann Lebesque theorem.

ez




Corollary 5.4. In the case m=0, (5.10), and hence (3.52), is true if F(n,A) is

uniformly almost periodic in a strip

{Re Al € p

which includes the contour I‘1 .

Proof. This is clear from the definition of almost periodicity. See the related result

in [4].
An example which one might cite here is
-]
=6 + [ +
" %m Y %% em kz
where the ok are distinct points in (-w.7m) , Co

[
1 k (ak)
#p and {ck} e 2'. The almost

periodicity of {(n,\) follows from results in (4], (13] .

Then, for an

Proposition 5.5. Let Cj, C.j be as in Propositin 5.3 and Theorem 3.9.

arbitrary integer m 2 0 (3.52) remains true if F(n,\) satisfy (4.8) and (5.10) is

replaced by

1E(nL ) > SIEI™, A ¢ €y Xecy (5.12)

for all 3 . The expansion results 3.9 follow in Hm[-n,w] .

Proof. Let xp be the A-extension of x and let LA(x,A) = leA,k) as before. Let

o ,02,'0-,om be m zeros (possibly including multiplicity, of F(n,A) . Let

! m m
plA) = T (x - ck) , p(D) = T (D =~ okI) .
k=1 k= 1

z = p(D)xA .

Then for Rel(l) > p , e‘xtz(t) Lz[o,“), for Re()) < =p, e_Xth(-w,D] and we conclude

that L(z,A) ¢ L2(P1), agsuming ry lies in |Re(A)} > p . The familiar computation from

ordinary differential equations shows that

- gth Liz,»)
L(xA,X) %(’XT S (5.13)

is a polynomial in ) of degree < m - 1. Since the zeros of p(X) are

where q(A)

zeros of F(n,\) we have

Fin,)\) = p(A)F(nO,X)

=66~
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where F(no,k) is (as a result of the assumption (4.8) on F(n,)A)) bounded and bounded

away from zero on P1. As seen earlier, Ny is the generating distribution for a neutral

group on L2[-n,ﬂ). Now (4.32) gives, with (5.13),

ql}i) L(z,})) -
pMF(y 0 ( 200 et ) = Flu,))

whence
Ftu,2) = qn) Fing,2)

F(ng,A) )
since L(z,)\) 1is in LZ(P1) and F(nO,A) is bounded and bounded away from zero on Ty

L(z,\) =

(5.14)

we conclude that the entire function F(u,)\) - q(A)F(nO,A) € Lz(F1) and, being of order 1
and type 7T , must be the F transform of an element w ¢ Lz[-n,n]; thus
Fa,ny = Fw,h) + alh)Fing,2) (5.15)

where q(A) , as indicated earlier, is a polynomial in ) of degree € m - 1 .,

Now (5.14) gives

Fiw,))

Lz, = F(no,x)

and (5.13) then gives

al}) 1 Lw,A) _ q() Lw, ) _ = ~
e e vl 2 caee vl o VRN 2 O v I P R R

LA(x,A) =1L (xA,X) =

The functions WO(A) and $1(X) can be used in the same way as wo(x) ' w1(X) were in

Theorem 3.9, The form

L{w,)\)
F(n,X)

enables one to use the Riemann-Lebesque theorem on L(w,A) together with the assumptions

¥, 0 =

(5.12) on F(n,A) to see that (3.52) is true with w1 replaced by 31 .« The results then
follow immediately.
We remark that (5.14) shows why the map B is not onto for m > 0 . Its range is

contained in the subspace of Hm[-ﬂ,ﬂ]' spanned by I?[-n,n] and the m distributions

5 " ees 5(m-1)

g to) n* S0y * n. . It is noteworthy that the elements of Hm(-ﬂ,ﬂ]' biortho-

0

gonal to the generalized exponentials in En lie in this subspace of Hm[-l,ﬂ]'.
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We will conclude this report with a short discussion of the application of our theory
to the study of uniform bases of exponentials. We confine attention to the case m = 0

and we make the following assumptions:

(1) no is the generating distribution associated with a neutral generator A

2
on L [-m,xw] ;

(11) F(no,x) satisfies (4.8) with n(=m) = 0 ;
(iii) the zeros, Ak‘ k ¢ K, of F(no,k) are uniformly separated:
IAj - Akl >D, 3#k, (5.16)

where D 1is a fixed positive number.
(iv) Let
A= {N1%eA}.
We assume there is a positive number M such that for every complex A
|F(noX)l > M dis(A,A). (5.17)
We begin by establishing

Proposition 5.6, Let no be the generating distribution associated with a neutral

generator A, on LZ[-ﬂ,n] with Fourier transform ¢()) = F(nO,A) satisfying (4.8).
et u € Lz[-w.w] and let

3(x) = Flu,2) .

Agsuming (i) - (iv) satisfied,

Sy = (____‘3(1\,() ]___v’(A) (5.18)
ke K v'(kk) A - Xk

for every complex A £ A , the convergence being uniform on compact sets in the complex

plane which do not meet A .

Proof. Let x ¢ Lzl-ﬂ;"] with Aj-Laplace transform L, {x,A) be such that, from
0

Theorem 4.5,

PlA) = g%%l . (5.19)

Let Y1 = F: U P; be constructed as in Figure 5.1 so that A and A lie in its

~

interior.

P

U 2




J—

Form the integral

Yiv)
f A~V

dv .

2
2n4
1

Following the argument applied to (5.4), we can show this integral to be zero for

A e Int(r1). Then, using (5.19),

FIETIp R B

L 3(A)av
FEER

1

Consatructing cross paths C3 » C.y from F: to T: of uniformly bounded length, at a

uniform distance from A (which (5.16) permits, we can use (5.17) to see that

2_1:1 / Lx fv\), av = [ Res($(v)/A - v)
T

1

the sum taken over the poles of Y(v)/A - v) , inside P, . From (5.19) the residue at

v=iis <-9%(A)/¢(A) while at each Xk ¢ A the residue is G(Ak)/(w'(kk)(k - Xk)].

Since the sum of the residues is zero, (5.18) follows. That the convergence is uniform on

compact sets not meeting A (this last condition can be dispensed with) follows from the

fact that f (Y(v)/A - v)dv tends uniformly to zero as ctj + o for A so restricted.

Cyy

Corollary 5.7. Under the hypotheses of Proposition 5.6, with ¢(A) the A-Laplace

transform of x ¢ LZ[-m,n] ,

L
VA = - = - {5.20)
k ex ¢OP "

Remark. This is, of course, essentially Corollary 5.4 and Theorem 3.9 aga#n, with the

coefficients identified more explicitly.

Theorem 5.8, Under the hvpotheses of Proposition 5.6 (including assumptions (i)=-{iv)),

At 2
the e , k € K, form a uniform basis for L (-w,w] .

Proof. We begin by noting that if we multiply 1/v(}A) = 1/F(n0,x) by A - Xk and use

(5.17) we obtain

Iw'(xk)l M, ke¢K.
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ALt
The results presented already in this section show the e x , ke X, to be complete

in Lz[-n,n] and, since the functions qk(t) € Lzl-ﬁ,ﬂ] whose Fourier transforms are the

functions
[4 (Ak) .« x
veurr _'__ e ’ ’
[4 (Ak)(k Ak)
Akt ’
are readily seen to satisfy, with pk(t) = e
(p, .q,) = § ’ k,2 € X
| S 2 LZ(_"'"] ) 32
Akt
the strong independence of the e , ke K, 13 assured. Congider sequences
{aklk € K} (5.22)
in 22 with the usual norm. Define
Akt
T : {ak} ) a e .
ke K
The domain of T ise initially sequences (5.22) with all but finitely many a) equal to

ALt
zero. Then we extend T in the obvious way to all {ak} for which Z ‘k e k
ke K

is convergent in L2[-ﬂ,ﬂ]- Then T 1is densely defined and one to one with dense range in

Lzl-ﬂ,ﬂ]. The adjoint map
*
T :kzx b q, * (b}
i8 again easily seen to have dense domain and range and to be one to one.

Now, in fact, the operators T and o are both bounded. This follows from a result,
proved in (5] and (22), for example, to the effect that if u ¢ LZ[-u,n] and ¢(d) is the
Fourier transform of u then the map from Y to {O(Ak)}, with the Xk constrained as
in (5.16), is continuous with respect to the L? norm of ¥ on any vertical line I and
the 22 nomm of {0(Ak)]. The relation (5.18) together with the fact that
[4 (X)/(¢'(Ak)(k- Ak)) is the Fourier transform of gy (t), together with the result just

stated, shows T* to be bounded. But then T = (T*)* is also bounded.

In order to complete the proof of the theorem it is clearly enough to show that =1,

or, equivalently, (1*)"1 = (7=")* is bounded. That argument proceeds as follows. From
qu

.

o e e,



the boundedness of T and the Plancherel theorem, we see that if {lk} € 12 then

‘k 2 .
YA = ] oo € LUl-mm) 5.23)
k €KX k
and there is a positive constant M, such that
e, =Pl e T ja? . (5.24)
L (P1) Y1 ke K

Now let {bk} € 12 . We want to obtain, in order to bound ('I")'1 , a bound, in

Lz {-n,%], on the sum

I b qe).
k ¢ K k 'k
Therefore, we consider the corresponding sum of transforms

) P e
O A=A

k € K
A priori we know nothing about the convergence of this sum. But now consider
b
)3 1
I R
X € K ['4 (Ak) A Ak ,
Since the numbers |w'(xk)| are bounded away from zero and {bk} € £°, we have
b
k 2
{ = e g
4 (kk)

and therefore, replacing the a, in (5.23), (5.24) by the bk/v'(xk) B

b
w?, < oot < 1ot
LT, k €K % X € K
where
M
My = 1Inf RN >0 .
keK ¢ k
Let
by 1 {
9(A) = o) = o ] ). (5.25) )
K ex 2O =X .
]
Since ¢ (A) is bounded on T1 y
wu22 <m, I |bk|2 (5.26) L
L (I‘.') k ¢ K

for some M2 >0 . From the growth properties of ¢ (A\) and ¢(A) we infer that




Proposition 5.6 can be applied to ¥()A) . Now (5.25) shows that

¢ (Ak) - bk

80 Proposition 5.6 gives

o) = ] % LALLEEY (5.27)

' -
ke K ¥ "% k
the same result as we would get from (5.25) by taking ¢(A)} 1inside the summation sign.
Pormula (5.27) gives the expansion of ©®()X) in terms of the functions

v(x)/(v-(xk)(x - Xk)] . Formula (5.26) can be used, with partial sums, to establish the

convergence of (5.27) in Lz(P1) and that formula likewise shows that
2 v(A) 2 2 2
194 =1 b, e} <M, T b 1S =moa{b 17,
Lz(r,) k ex KOG =2) L2(F1) Zeex K 2k,
Applying the Plancherel theorem, there is an M3 > 0 such that

2 2
1 7 bt < M #{b }I
ek FXpi(am,m PR

and we conclude that (T*)~?, and hence T~! ,is bounded, completing the proof of the

theorem.

It may be useful to review the outline of the proof above. A more or less standard

result shows that T is bounded. The boundedness of (T")~' is obtained by introducing

by 2

two operators. The operator C carries {bk} € 22 into {GTTT—T_ } e 47 if the
k

Iv'(xkl are bounded below. The operator B 1s the Bary map described at the beginning of

this section. what we have shown is that
(" '=B1C.
Since B8 and C are bounded (and boundedly invertible, in fact) this result allows one to

L
infer the boundedness of (T ) 1 from the boundedness of T . The essential contribution

of this report lies in the development of the A-Laplace transform, establishing the

iyl and x| B where | 1is the A-Laplace transform of x ,

) L2 {-n,m

which permits the boundidness of T to be restated in the form (5.24).

equivalence of

These results can be extended to Hm[—n,n], replacing (5.17) by

| Fin, ) 2 Me1 + 1A ats(r, A,

-] 2=
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